Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- data.csv +11 -0
- pasta.py +168 -0
- qnacsv.csv +0 -0
- requirements.txt +13 -0
data.csv
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Patient_Name,Country,Disease,CUI,Snomed,Oxygen_Rate,Med_Type,Admission_Date
|
| 2 |
+
John,India,Severe Fever,CUI012345,SNO1234,92,Commercial,04-04-2020
|
| 3 |
+
Surya,USA,Cancer,CUI012346,SNO1235,98,Commercial,23-09-2020
|
| 4 |
+
Ajith,Russia,Diabetes,CUI012347,SNO1236,96,Medicare,04-03-2020
|
| 5 |
+
Aman,India,Severe Fever,CUI012348,SNO1237,98,Commercial,07-03-2020
|
| 6 |
+
Ben,USA,Severe Fever,CUI012349,SNO1238,89,Medicare,15-01-2020
|
| 7 |
+
Ravi,India,Edema,CUI012350,SNO1239,99,Medicaid,05-05-2020
|
| 8 |
+
Jitu,USA,Alzheimer,CUI012351,SNO1240,95,Medicaid,02-12-2020
|
| 9 |
+
Anjali,Russia,Alzheimer,CUI012352,SNO1241,94,Medicare,22-04-2020
|
| 10 |
+
Priya,India,Cardiac Arrest,CUI012353,SNO1242,94,Medicaid,11-08-2020
|
| 11 |
+
Dinesh,USA,Pneumonia,CUI012354,SNO1243,93,Medicare,02-09-2020
|
pasta.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Fri May 26 14:07:22 2023
|
| 4 |
+
|
| 5 |
+
@author: vibin
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import streamlit as st
|
| 9 |
+
from pandasql import sqldf
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import re
|
| 12 |
+
from typing import List
|
| 13 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 14 |
+
import re
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
### Main
|
| 22 |
+
|
| 23 |
+
nav = st.sidebar.radio("Navigation",["TAPAS","Text2SQL"])
|
| 24 |
+
if nav == "TAPAS":
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
col1 , col2, col3 = st.columns(3)
|
| 29 |
+
col2.title("TAPAS")
|
| 30 |
+
|
| 31 |
+
col3 , col4 = st.columns([3,12])
|
| 32 |
+
col4.text("Tabular Data Text Extraction using text")
|
| 33 |
+
|
| 34 |
+
table = pd.read_csv("data.csv")
|
| 35 |
+
table = table.astype(str)
|
| 36 |
+
st.text("DataSet - ")
|
| 37 |
+
st.dataframe(table,width=3000,height= 400)
|
| 38 |
+
|
| 39 |
+
st.title("")
|
| 40 |
+
|
| 41 |
+
lst_q = ["Which country has low medicare","Who are the patients from india","Who are the patients from india","Patients who have Edema","CUI code for diabetes patients","Patients having oxygen less than 94 but 91"]
|
| 42 |
+
|
| 43 |
+
v2 = st.selectbox("Choose your text",lst_q,index = 0)
|
| 44 |
+
|
| 45 |
+
st.title("")
|
| 46 |
+
|
| 47 |
+
sql_txt = st.text_area("TAPAS Input",v2)
|
| 48 |
+
|
| 49 |
+
if st.button("Predict"):
|
| 50 |
+
tqa = pipeline(task="table-question-answering",
|
| 51 |
+
model="google/tapas-base-finetuned-wtq")
|
| 52 |
+
|
| 53 |
+
txt_sql = tqa(table=table, query=sql_txt)["answer"]
|
| 54 |
+
st.text("Output - ")
|
| 55 |
+
st.success(f"{txt_sql}")
|
| 56 |
+
# st.write(all_students)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
elif nav == "Text2SQL":
|
| 61 |
+
|
| 62 |
+
### Function
|
| 63 |
+
|
| 64 |
+
def prepare_input(question: str, table: List[str]):
|
| 65 |
+
table_prefix = "table:"
|
| 66 |
+
question_prefix = "question:"
|
| 67 |
+
join_table = ",".join(table)
|
| 68 |
+
inputs = f"{question_prefix} {question} {table_prefix} {join_table}"
|
| 69 |
+
input_ids = tokenizer(inputs, max_length=512, return_tensors="pt").input_ids
|
| 70 |
+
return input_ids
|
| 71 |
+
|
| 72 |
+
def inference(question: str, table: List[str]) -> str:
|
| 73 |
+
input_data = prepare_input(question=question, table=table)
|
| 74 |
+
input_data = input_data.to(model.device)
|
| 75 |
+
outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700)
|
| 76 |
+
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
|
| 77 |
+
return result
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
col1 , col2, col3 = st.columns(3)
|
| 81 |
+
col2.title("Text2SQL")
|
| 82 |
+
|
| 83 |
+
col3 , col4 = st.columns([1,20])
|
| 84 |
+
col4.text("Text will be converted to SQL Query and can extract the data from DataSet")
|
| 85 |
+
|
| 86 |
+
# Import Data
|
| 87 |
+
|
| 88 |
+
df_qna = pd.read_csv("qnacsv.csv", encoding= 'unicode_escape')
|
| 89 |
+
|
| 90 |
+
st.title("")
|
| 91 |
+
|
| 92 |
+
st.text("DataSet - ")
|
| 93 |
+
st.dataframe(df_qna,width=3000,height= 500)
|
| 94 |
+
|
| 95 |
+
st.title("")
|
| 96 |
+
|
| 97 |
+
lst_q = ["what interface is measure indicator code = 72_HR_ABX and version is 1 and source is TD", "get class code with measure = 72_HR_ABX", "get sum of version for Class_Code is Antibiotic Stewardship", "what interface is measure indicator code = 72_HR_ABX"]
|
| 98 |
+
v2 = st.selectbox("Choose your text",lst_q,index = 0)
|
| 99 |
+
|
| 100 |
+
st.title("")
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
sql_txt = st.text_area("Text for SQL Conversion",v2)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
if st.button("Predict"):
|
| 107 |
+
tokenizer = AutoTokenizer.from_pretrained("juierror/flan-t5-text2sql-with-schema")
|
| 108 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("juierror/flan-t5-text2sql-with-schema")
|
| 109 |
+
|
| 110 |
+
# text = "what interface is measure indicator code = 72_HR_ABX and version is 1 and source is TD"
|
| 111 |
+
table_name = "df_qna"
|
| 112 |
+
table_col = ["Type","Class_Code", "Version","Measure_Indicator_Code","Measure_Indicator","Name","Description_Definition", "Source", "Interfaces"]
|
| 113 |
+
|
| 114 |
+
txt_sql = inference(question=sql_txt, table=table_col)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
### SQL Modification
|
| 118 |
+
txt_sql = txt_sql.replace("table",table_name)
|
| 119 |
+
sql_quotes = []
|
| 120 |
+
for match in re.finditer("=",txt_sql):
|
| 121 |
+
new_txt = txt_sql[match.span()[1]+1:]
|
| 122 |
+
try:
|
| 123 |
+
match2 = re.search("AND",new_txt)
|
| 124 |
+
sql_quotes.append((new_txt[:match2.span()[0]]).strip())
|
| 125 |
+
except:
|
| 126 |
+
sql_quotes.append(new_txt.strip())
|
| 127 |
+
|
| 128 |
+
for i in sql_quotes:
|
| 129 |
+
qts = "'" + i + "'"
|
| 130 |
+
txt_sql = txt_sql.replace(i, qts)
|
| 131 |
+
|
| 132 |
+
st.success(f"{txt_sql}")
|
| 133 |
+
all_students = sqldf(txt_sql)
|
| 134 |
+
|
| 135 |
+
st.text("Output - ")
|
| 136 |
+
st.write(all_students)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
qnacsv.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pip
|
| 2 |
+
Cmake
|
| 3 |
+
wheel
|
| 4 |
+
pandas
|
| 5 |
+
jinja2
|
| 6 |
+
pandasql
|
| 7 |
+
Cython
|
| 8 |
+
datasets
|
| 9 |
+
huggingface-hub
|
| 10 |
+
tapas
|
| 11 |
+
torch
|
| 12 |
+
transformers
|
| 13 |
+
streamlit
|