Spaces:
Sleeping
Sleeping
Kieran Gookey
commited on
Commit
·
242bba0
1
Parent(s):
df26c41
Tried different approach
Browse files
app.py
CHANGED
|
@@ -10,52 +10,100 @@ from llama_index.vector_stores.types import MetadataFilters, ExactMatchFilter
|
|
| 10 |
|
| 11 |
inference_api_key = st.secrets["INFRERENCE_API_TOKEN"]
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
token=inference_api_key,
|
| 19 |
-
model_kwargs={"device": ""},
|
| 20 |
-
encode_kwargs={"normalize_embeddings": True},
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
service_context = ServiceContext.from_defaults(
|
| 24 |
-
embed_model=embed_model, llm=llm)
|
| 25 |
|
| 26 |
html_file = st.file_uploader("Upload a html file", type=["html"])
|
| 27 |
|
| 28 |
-
if
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
|
|
|
| 10 |
|
| 11 |
inference_api_key = st.secrets["INFRERENCE_API_TOKEN"]
|
| 12 |
|
| 13 |
+
embed_model_name = st.text_input(
|
| 14 |
+
'Embed Model name', "Gooly/gte-small-en-fine-tuned-e-commerce")
|
| 15 |
|
| 16 |
+
llm_model_name = st.text_input(
|
| 17 |
+
'Embed Model name', "mistralai/Mistral-7B-Instruct-v0.2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
html_file = st.file_uploader("Upload a html file", type=["html"])
|
| 20 |
|
| 21 |
+
if st.button('Start Pipeline'):
|
| 22 |
+
if html_file is not None and embed_model_name is not None and llm_model_name is not None:
|
| 23 |
+
st.write('Running Pipeline')
|
| 24 |
+
llm = HuggingFaceInferenceAPI(
|
| 25 |
+
model_name=llm_model_name, token=inference_api_key)
|
| 26 |
+
|
| 27 |
+
embed_model = HuggingFaceInferenceAPIEmbedding(
|
| 28 |
+
model_name=embed_model_name,
|
| 29 |
+
token=inference_api_key,
|
| 30 |
+
model_kwargs={"device": ""},
|
| 31 |
+
encode_kwargs={"normalize_embeddings": True},
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
service_context = ServiceContext.from_defaults(
|
| 35 |
+
embed_model=embed_model, llm=llm)
|
| 36 |
+
|
| 37 |
+
stringio = StringIO(html_file.getvalue().decode("utf-8"))
|
| 38 |
+
string_data = stringio.read()
|
| 39 |
+
with st.expander("Uploaded HTML"):
|
| 40 |
+
st.write(string_data)
|
| 41 |
+
|
| 42 |
+
document_id = str(uuid.uuid4())
|
| 43 |
+
|
| 44 |
+
document = Document(text=string_data)
|
| 45 |
+
document.metadata["id"] = document_id
|
| 46 |
+
documents = [document]
|
| 47 |
+
|
| 48 |
+
filters = MetadataFilters(
|
| 49 |
+
filters=[ExactMatchFilter(key="id", value=document_id)])
|
| 50 |
+
|
| 51 |
+
index = VectorStoreIndex.from_documents(
|
| 52 |
+
documents, show_progress=True, metadata={"source": "HTML"}, service_context=service_context)
|
| 53 |
+
|
| 54 |
+
retriever = index.as_retriever()
|
| 55 |
+
|
| 56 |
+
ranked_nodes = retriever.retrieve(
|
| 57 |
+
"Get me all the information about the product")
|
| 58 |
+
|
| 59 |
+
with st.expander("Ranked Nodes"):
|
| 60 |
+
for node in ranked_nodes:
|
| 61 |
+
st.write(node.node.get_content(), "-> Score:", node.score)
|
| 62 |
+
|
| 63 |
+
query_engine = index.as_query_engine(
|
| 64 |
+
filters=filters, service_context=service_context)
|
| 65 |
+
|
| 66 |
+
response = query_engine.query(
|
| 67 |
+
"Get me all the information about the product")
|
| 68 |
+
|
| 69 |
+
st.write(response)
|
| 70 |
+
|
| 71 |
+
else:
|
| 72 |
+
st.error('Please fill in all the fields')
|
| 73 |
+
else:
|
| 74 |
+
st.write('Press start to begin')
|
| 75 |
+
|
| 76 |
+
# if html_file is not None:
|
| 77 |
+
# stringio = StringIO(html_file.getvalue().decode("utf-8"))
|
| 78 |
+
# string_data = stringio.read()
|
| 79 |
+
# with st.expander("Uploaded HTML"):
|
| 80 |
+
# st.write(string_data)
|
| 81 |
|
| 82 |
+
# document_id = str(uuid.uuid4())
|
| 83 |
|
| 84 |
+
# document = Document(text=string_data)
|
| 85 |
+
# document.metadata["id"] = document_id
|
| 86 |
+
# documents = [document]
|
| 87 |
|
| 88 |
+
# filters = MetadataFilters(
|
| 89 |
+
# filters=[ExactMatchFilter(key="id", value=document_id)])
|
| 90 |
|
| 91 |
+
# index = VectorStoreIndex.from_documents(
|
| 92 |
+
# documents, show_progress=True, metadata={"source": "HTML"}, service_context=service_context)
|
| 93 |
|
| 94 |
+
# retriever = index.as_retriever()
|
| 95 |
|
| 96 |
+
# ranked_nodes = retriever.retrieve(
|
| 97 |
+
# "Get me all the information about the product")
|
| 98 |
|
| 99 |
+
# with st.expander("Ranked Nodes"):
|
| 100 |
+
# for node in ranked_nodes:
|
| 101 |
+
# st.write(node.node.get_content(), "-> Score:", node.score)
|
| 102 |
|
| 103 |
+
# query_engine = index.as_query_engine(
|
| 104 |
+
# filters=filters, service_context=service_context)
|
| 105 |
|
| 106 |
+
# response = query_engine.query(
|
| 107 |
+
# "Get me all the information about the product")
|
| 108 |
|
| 109 |
+
# st.write(response)
|