File size: 17,879 Bytes
bff56b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687d478
bff56b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9248e53
bff56b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import cv2 as cv
import numpy as np
import torch
from gensim import models
import xgboost as xgb
import XGBoost_utils
import sys
import joblib
from DL_models import CustomResNet

#Ad/Brand Gaze Prediction

#Now the model is only able to process magazine images or images with full-page counterpages
#Please indicate where is the ad by ad_location parameter: left <- ad_location=0, right <- ad_location=1; otherwise, set it as None
def Ad_Gaze_Prediction(input_ad_path, input_ctpg_path, ad_location,
                       text_detection_model_path, LDA_model_pth, training_ad_text_dictionary_path, training_lang_preposition_path,
                       training_language, ad_embeddings, ctpg_embeddings,
                       Ad_var=None, Ctpg_var=None,
                       flag_full_page_ad=False,
                       surface_sizes=None, Product_Group=None, Media_Category=None, TextBoxes=None, Obj_and_Topics=None,
                       filesize_ad=None, filesize_ctpg=None,
                       obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type='Brand', Info_printing=True, Ad_Features_Only=False,
                       save_Var=False, Ad_Nr=None, Ctpg_Nr=None, task=None,
                       save_index=None, return_save_fts=False,
                       avgerage_out_index=None, average_out_data=None,
                       zeroing_out_index=None):
    
    Ad_ind = np.array([0,1,2,3,4,6,7,8,12,13,14,18,20,22]+list(range(24,31))+[38]+list(range(40,45))+list(range(50,53))+list(range(67,109))+[110])
    Ctpg_ind = np.array([5,9,10,11,15,16,17,19,21,23]+list(range(31,38))+[39]+list(range(45,50))+list(range(53,56))+list(range(56,65))
                  +[65,66]+[109])
    
    if Ad_var is not None and Ctpg_var is not None:
        gaze = 0
        if Gaze_Time_Type == 'ALL':
            gaze_brand = 0
            gaze_ad = 0
            gaze_bs = 0
        Vars_10_input = []
        num_samples = Ctpg_var[0].shape[0]
        for i in range(10):
            Var = np.zeros((num_samples,111))
            Var[:,Ad_ind] = Ad_var[i]
            Var[:,Ctpg_ind] = Ctpg_var[i]
            Vars_10_input.append(Var)
    else:
        Vars_10_input = None

        ##Image Loading
        if Info_printing: print('Loading Image ......')
        has_ctpg = True
        if type(input_ad_path) == str:
            ad_img = cv.imread(input_ad_path)
            ad_img = cv.cvtColor(ad_img, cv.COLOR_BGR2RGB)
            ad_img_dim1, ad_img_dim2 = ad_img.shape[:2]
            dim1_scale = int(np.ceil(ad_img_dim1/32))
            dim2_scale = int(np.ceil(ad_img_dim2/32))
            ad_img = cv.resize(ad_img, (32*dim2_scale,32*dim1_scale))
        else:
            ad_img = input_ad_path

        if input_ctpg_path is None:
            ctpg_img = None #Initialization
            has_ctpg = False
        else:
            if type(input_ctpg_path) == str:
                ctpg_img = cv.imread(input_ctpg_path)
                ctpg_img = cv.cvtColor(ctpg_img, cv.COLOR_BGR2RGB)
                ctpg_img_dim1, ctpg_img_dim2 = ctpg_img.shape[:2]
                dim1_scale = int(np.ceil(ctpg_img_dim1/32))
                dim2_scale = int(np.ceil(ctpg_img_dim2/32))
                ctpg_img = cv.resize(ctpg_img, (32*dim2_scale,32*dim1_scale))
            else:
                ctpg_img = input_ctpg_path


        if Info_printing: print()

        ##File Size
        if Info_printing: print('Calculating complexity (filsize) ......')
        if filesize_ad is None or filesize_ctpg is None:
            filesize_ad = XGBoost_utils.filesize_individual(input_ad_path)
            if has_ctpg:
                filesize_ctpg = XGBoost_utils.filesize_individual(input_ctpg_path)
            else:
                filesize_ctpg = 0
            if Info_printing: print()
        
        ##Salience
        if Info_printing: print('Processing Salience Information ......')
        #Salience Map
        S_map_ad = XGBoost_utils.Itti_Saliency(ad_img, scale_final=3)
        if has_ctpg:
            S_map_ctpg = XGBoost_utils.Itti_Saliency(ctpg_img, scale_final=3)

        #K-Mean
        threshold = 0.001
        enhance_rate = 1
        num_clusters = 3

        if flag_full_page_ad:
            width = S_map_ad.shape[1]

            left = S_map_ad[:, :width//2]
            vecs_left, km_left = XGBoost_utils.salience_matrix_conv(left,threshold,num_clusters,enhance_rate=enhance_rate)
            _,scores_left,widths_left,D_left = XGBoost_utils.img_clusters(num_clusters, left, km_left.labels_, km_left.cluster_centers_, vecs_left)

            right = S_map_ad[:, width//2:]
            vecs_right, km_right = XGBoost_utils.salience_matrix_conv(right,threshold,num_clusters,enhance_rate=enhance_rate)
            _,scores_right,widths_right,D_right = XGBoost_utils.img_clusters(num_clusters, right, km_right.labels_, km_right.cluster_centers_, vecs_right)

            ad_sal = np.array(scores_left) + np.array(scores_right)
            ad_width = np.array(widths_left) + np.array(widths_right); ad_width = np.log(ad_width+1)
            ad_sig_obj = D_left + D_right

            ctpg_sal = np.zeros_like(ad_sal)
            ctpg_width = np.zeros_like(ad_width)
            ctpg_sig_obj = 0

        else:
            vecs, km = XGBoost_utils.salience_matrix_conv(S_map_ad,threshold,num_clusters,enhance_rate=enhance_rate)
            _,scores,widths,D = XGBoost_utils.img_clusters(num_clusters, S_map_ad, km.labels_, km.cluster_centers_, vecs)
            ad_sal = np.array(scores)
            ad_width = np.log(np.array(widths)+1)
            ad_sig_obj = D

            if has_ctpg:
                vecs, km = XGBoost_utils.salience_matrix_conv(S_map_ctpg,threshold,num_clusters,enhance_rate=enhance_rate)
                _,scores,widths,D = XGBoost_utils.img_clusters(num_clusters, S_map_ctpg, km.labels_, km.cluster_centers_, vecs)
                ctpg_sal = np.array(scores)
                ctpg_width = np.log(np.array(widths)+1)
                ctpg_sig_obj = D
            else:
                ctpg_sal = np.zeros_like(ad_sal)
                ctpg_width = np.zeros_like(ad_width)
                ctpg_sig_obj = 0
        if Info_printing: print()

        ##Texture
        if Info_printing: print('Processing Textures and Symmetries ......')
        kp_stat_ad, num_kp_ad, vlad_enc_ad = XGBoost_utils.VLAD_Encoding_SIFT(ad_img)
        kp_stat_ctpg, num_kp_ctpg, vlad_enc_ctpg = XGBoost_utils.VLAD_Encoding_SIFT(ctpg_img)
        symmetry_ad = XGBoost_utils.symmetry_lines(ad_img)
        symmetry_ctpg = XGBoost_utils.symmetry_lines(ctpg_img)

        ##Number of Textboxes
        if Info_printing: print('Processing Textboxes ......')
        if TextBoxes is None:
            #Need multiples of 32 in both dimensions
            ad_num_textboxes = XGBoost_utils.text_detection_east(ad_img, text_detection_model_path)
            if has_ctpg:
                ctpg_num_textboxes = XGBoost_utils.text_detection_east(ctpg_img, text_detection_model_path)
            else:
                ctpg_num_textboxes = 0
        else:
            ad_num_textboxes, ctpg_num_textboxes = TextBoxes
        if Info_printing: print()

        ##Objects and Topic Difference
        if Info_printing: print('Processing Object and Topic Information ......')
        if Info_printing: print('Loading Object Detection Model')
        if Obj_and_Topics is None:
            if obj_detection_model_pth is None:
                model_obj = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, trust_repo=True, verbose=False)
            else:
                model_obj = torch.load(obj_detection_model_pth)
            model_lda = None
            dictionary = torch.load(training_ad_text_dictionary_path)
            dutch_preposition = torch.load(training_lang_preposition_path)
            ad_num_objs, ctpg_num_objs, ad_topic_weights, topic_Diff = XGBoost_utils.object_and_topic_variables(ad_img, ctpg_img, has_ctpg, dictionary, 
                                                                                                dutch_preposition, training_language, model_obj, 
                                                                                                model_lda, num_topic)
        else:
            ad_num_objs, ctpg_num_objs, ad_topic_soft_weights, ctpg_topic_soft_weights = Obj_and_Topics
            indx = np.argmax(ad_topic_soft_weights)
            ad_topic_weights = np.zeros(num_topic)
            ad_topic_weights[indx] = 1
            topic_Diff = XGBoost_utils.KL_dist(ad_topic_soft_weights, ctpg_topic_soft_weights)
        
        if Info_printing: print()

        ##Left and Right Indicator
        if Info_printing: print('Getting Left/Right Indicator ......')
        if flag_full_page_ad:
            Left_right_indicator = [1,1]
        else:
            if has_ctpg:
                if ad_location == 0:
                    Left_right_indicator = [1,0]
                elif ad_location == 1:
                    Left_right_indicator = [0,1]
                else:
                    Left_right_indicator = [1,1]
            else:
                Left_right_indicator = [1,0]
        if Info_printing: print()

        ##Product Category
        if Info_printing: print('Getting Product Category Indicator ......')
        if Product_Group is None:
            group_ind = XGBoost_utils.product_category()
        else:
            group_ind = Product_Group
        if Info_printing: print()

        ##Surface Sizes
        if Info_printing: print('Getting Surface Sizes ......')
        if surface_sizes is None:
            ad_img = cv.cvtColor(ad_img, cv.COLOR_RGB2BGR)
            
            print('Please select the bounding box for your ad (from top left to bottom right)')
            A = XGBoost_utils.Region_Selection(ad_img)
            print()

            print('Please select the bounding box for brands (from top left to bottom right)')
            B = XGBoost_utils.Region_Selection(ad_img)
            print()

            print('Please select the bounding box for texts (from top left to bottom right)')
            T = XGBoost_utils.Region_Selection(ad_img)
            surface_sizes = [B/A*100,(1-B/A-T/A)*100,T/A*100,np.log(sum(Left_right_indicator)*5)]

    ##Get All things together
    if Info_printing: print('Predicting ......')
    gaze = 0
    if Gaze_Time_Type == 'ALL':
        gaze_brand = 0
        gaze_ad = 0
        gaze_bs = 0
    
    Vars_10 = []
    Ad_Features = []
    if save_index is not None:
        saved_Features = []
    for i in range(10):
        if Vars_10_input is None:
            #Var construction
            pca_topic_transform = joblib.load('Topic_Embedding_PCAs/pca_model_'+str(i)+'.pkl')
            ad_topics_curr = pca_topic_transform.transform(ad_embeddings)[:,:4][0]
            ctpg_topics_curr = pca_topic_transform.transform(ctpg_embeddings)[:,:4][0]
            ad_topic_weights = ad_topics_curr
            topic_Diff = np.linalg.norm(ad_embeddings-ctpg_embeddings)
            X = surface_sizes+[filesize_ad,filesize_ctpg]+list(ad_sal)+list(ctpg_sal)+list(ad_width)+list(ctpg_width)+[ad_sig_obj,ctpg_sig_obj]+[ad_num_textboxes,ctpg_num_textboxes,ad_num_objs,ctpg_num_objs]
            X = np.array(X).reshape(1,len(X))
            X = np.concatenate((X,kp_stat_ad,kp_stat_ctpg,num_kp_ad,num_kp_ctpg,vlad_enc_ad,vlad_enc_ctpg,symmetry_ad,symmetry_ctpg),axis=1)
            X_for_typ = list(X[0,[0,1,2,3,4,6,7,8,12,13,14,18,20,22,38]+list(range(40,45))+list(range(24,31))+list(range(50,53))])+list(group_ind)+list(ad_topic_weights)
            X_for_typ = np.array(X_for_typ).reshape(1,len(X_for_typ))
            Ad_Features.append(X_for_typ)
            
            if Gaze_Time_Type == 'Brand':
                med = torch.load('Brand_Gaze_Model/typicality_train_medoid')
            elif Gaze_Time_Type == 'Ad':
                med = torch.load('Ad_Gaze_Model/typicality_train_medoid')
            elif Gaze_Time_Type == 'BS':
                med = torch.load('Brand_Share_Model/typicality_train_medoid')
            elif Gaze_Time_Type == 'ALL':
                med = torch.load('Brand_Gaze_Model/typicality_train_medoid')
            
            typ = XGBoost_utils.typ_cat(med, X_for_typ, group_ind, np.abs)
            if Media_Category is None:
                Media_Category = np.zeros((1,9))
            Var = np.concatenate([X,Media_Category,np.array(Left_right_indicator).reshape(1,2),ad_topic_weights.reshape(1,4),group_ind.reshape(1,38),np.array([topic_Diff.item(),typ.item()]).reshape(1,2)],axis=1)
            
            if avgerage_out_index is not None:
                Var[0, avgerage_out_index] = average_out_data
            
            if zeroing_out_index is not None:
                Var[0, zeroing_out_index] = 0

            Vars_10.append(Var)
            if save_index is not None:
                saved_Features.append(Var[saved_Features])
        else:
            Var = Vars_10_input[i]

        if Ad_Features_Only:
            continue
        
        if save_Var:
            torch.save(Var, 'Var_Check_Across/'+task+'_Var_'+str(Ad_Nr)+'_'+str(Ctpg_Nr)+'.pt')

        xgb_model = xgb.XGBRegressor()
        if Gaze_Time_Type == 'Brand':
            xgb_model.load_model('Brand_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
        elif Gaze_Time_Type == 'Ad':
            xgb_model.load_model('Ad_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
        elif Gaze_Time_Type == 'BS':
            xgb_model.load_model('Brand_Share_Model/10_models/Model_'+str(i+1)+'.json')
        elif Gaze_Time_Type == 'ALL':
            xgb_model.load_model('Brand_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
            gaze_brand += xgb_model.predict(Var)
            xgb_model.load_model('Ad_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
            gaze_ad += xgb_model.predict(Var)
            xgb_model.load_model('Brand_Share_Model/10_models/Model_'+str(i+1)+'.json')
            gaze_bs += xgb_model.predict(Var)
            
        gaze += xgb_model.predict(Var)
    if Ad_Features_Only:
        return Ad_Features
    if return_save_fts:
        return saved_Features
    gaze = gaze/10
    if Gaze_Time_Type == 'ALL':
        gaze_brand = gaze_brand/10
        gaze_ad = gaze_ad/10
        gaze_bs = gaze_bs/10
        if save_Var:
            torch.save([gaze_brand,gaze_ad,gaze_bs], 'Gaze_Check_Across/'+task+'_Var_'+str(Ad_Nr)+'_'+str(Ctpg_Nr)+'.pt')
        if len(gaze_brand) == 1:
            return (np.exp(gaze_ad)-1).item(), (np.exp(gaze_brand)-1).item(), gaze_bs.item(), Vars_10
        else:
            return (np.exp(gaze_ad)-1), (np.exp(gaze_brand)-1), gaze_bs, Vars_10
    else:
        if Info_printing: print('The predicted '+Gaze_Time_Type+' gaze time is: ', (np.exp(gaze)-1).item() if Gaze_Time_Type != 'BS' else gaze.item())
        if len(gaze) == 1:
            return (np.exp(gaze)-1).item() if Gaze_Time_Type != 'BS' else gaze.item(), Vars_10
        else:
            return (np.exp(gaze)-1) if Gaze_Time_Type != 'BS' else gaze, Vars_10


def CNN_Prediction(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'): #Gaze_Type='AG' or 'BG'
    gaze = 0
    if torch.cuda.is_available():
        device = 'cuda'
    elif torch.backends.mps.is_available():
        device = 'mps'
    else:
        device = 'cpu'
    if Gaze_Type == 'AG':
        a_temp = 0.2590; b_temp = 1.1781 #AG
    elif Gaze_Type == 'BG':
        a_temp = 0.2100; b_temp = 0.3541 #BG
    elif Gaze_Type == 'BS':
        a_temp = 1; b_temp = 0 #BS

    for i in range(1):
        net = CustomResNet()
        net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(i)+'.pth',map_location=torch.device('cpu')))
        net = net.to(device)
        if Gaze_Type != 'BS':
            with torch.no_grad():
                pred = net.forward(adv_imgs, ctpg_imgs, ad_locations)
                pred = torch.exp(pred*a_temp+b_temp) - 1
                gaze += pred/10
        else:
            with torch.no_grad():
                pred = net.forward(adv_imgs, ctpg_imgs, ad_locations)
                gaze += pred/10

    return gaze

def HeatMap_CNN(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'):
    if torch.cuda.is_available():
        device = 'cuda'
    elif torch.backends.mps.is_available():
        device = 'mps'
    else:
        device = 'cpu'

    net = CustomResNet()
    net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(0)+'.pth',map_location=torch.device('cpu')))
    net = net.to(device)
    pred = net(adv_imgs/255.0,ctpg_imgs/255.0,ad_locations)
    print('heatmap pred: ', pred)

    pred.backward()

    # pull the gradients out of the model
    gradients = net.get_activations_gradient()

    # pool the gradients across the channels
    pooled_gradients = torch.mean(gradients, dim=[0, 2, 3])

    # get the activations of the last convolutional layer
    activations = net.get_activations(adv_imgs).detach()

    # weight the channels by corresponding gradients
    for i in range(512):
        activations[:, i, :, :] *= pooled_gradients[i]

    # average the channels of the activations
    heatmap = torch.mean(activations, dim=1).squeeze().to('cpu')

    # relu on top of the heatmap
    # expression (2) in https://arxiv.org/pdf/1610.02391.pdf
    heatmap = np.maximum(heatmap, 0)

    # normalize the heatmap
    heatmap /= torch.max(heatmap)

    img = torch.permute(adv_imgs[0],(1,2,0)).to(torch.uint8).numpy()
    img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
    heatmap = cv.resize(heatmap.numpy(), (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap = cv.applyColorMap(heatmap, cv.COLORMAP_TURBO)
    superimposed_img = heatmap * 0.8 + img * 0.5
    superimposed_img /= np.max(superimposed_img)
    superimposed_img = np.uint8(255 * superimposed_img)

    return superimposed_img