Spaces:
Sleeping
Sleeping
File size: 17,879 Bytes
bff56b8 687d478 bff56b8 9248e53 bff56b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import cv2 as cv
import numpy as np
import torch
from gensim import models
import xgboost as xgb
import XGBoost_utils
import sys
import joblib
from DL_models import CustomResNet
#Ad/Brand Gaze Prediction
#Now the model is only able to process magazine images or images with full-page counterpages
#Please indicate where is the ad by ad_location parameter: left <- ad_location=0, right <- ad_location=1; otherwise, set it as None
def Ad_Gaze_Prediction(input_ad_path, input_ctpg_path, ad_location,
text_detection_model_path, LDA_model_pth, training_ad_text_dictionary_path, training_lang_preposition_path,
training_language, ad_embeddings, ctpg_embeddings,
Ad_var=None, Ctpg_var=None,
flag_full_page_ad=False,
surface_sizes=None, Product_Group=None, Media_Category=None, TextBoxes=None, Obj_and_Topics=None,
filesize_ad=None, filesize_ctpg=None,
obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type='Brand', Info_printing=True, Ad_Features_Only=False,
save_Var=False, Ad_Nr=None, Ctpg_Nr=None, task=None,
save_index=None, return_save_fts=False,
avgerage_out_index=None, average_out_data=None,
zeroing_out_index=None):
Ad_ind = np.array([0,1,2,3,4,6,7,8,12,13,14,18,20,22]+list(range(24,31))+[38]+list(range(40,45))+list(range(50,53))+list(range(67,109))+[110])
Ctpg_ind = np.array([5,9,10,11,15,16,17,19,21,23]+list(range(31,38))+[39]+list(range(45,50))+list(range(53,56))+list(range(56,65))
+[65,66]+[109])
if Ad_var is not None and Ctpg_var is not None:
gaze = 0
if Gaze_Time_Type == 'ALL':
gaze_brand = 0
gaze_ad = 0
gaze_bs = 0
Vars_10_input = []
num_samples = Ctpg_var[0].shape[0]
for i in range(10):
Var = np.zeros((num_samples,111))
Var[:,Ad_ind] = Ad_var[i]
Var[:,Ctpg_ind] = Ctpg_var[i]
Vars_10_input.append(Var)
else:
Vars_10_input = None
##Image Loading
if Info_printing: print('Loading Image ......')
has_ctpg = True
if type(input_ad_path) == str:
ad_img = cv.imread(input_ad_path)
ad_img = cv.cvtColor(ad_img, cv.COLOR_BGR2RGB)
ad_img_dim1, ad_img_dim2 = ad_img.shape[:2]
dim1_scale = int(np.ceil(ad_img_dim1/32))
dim2_scale = int(np.ceil(ad_img_dim2/32))
ad_img = cv.resize(ad_img, (32*dim2_scale,32*dim1_scale))
else:
ad_img = input_ad_path
if input_ctpg_path is None:
ctpg_img = None #Initialization
has_ctpg = False
else:
if type(input_ctpg_path) == str:
ctpg_img = cv.imread(input_ctpg_path)
ctpg_img = cv.cvtColor(ctpg_img, cv.COLOR_BGR2RGB)
ctpg_img_dim1, ctpg_img_dim2 = ctpg_img.shape[:2]
dim1_scale = int(np.ceil(ctpg_img_dim1/32))
dim2_scale = int(np.ceil(ctpg_img_dim2/32))
ctpg_img = cv.resize(ctpg_img, (32*dim2_scale,32*dim1_scale))
else:
ctpg_img = input_ctpg_path
if Info_printing: print()
##File Size
if Info_printing: print('Calculating complexity (filsize) ......')
if filesize_ad is None or filesize_ctpg is None:
filesize_ad = XGBoost_utils.filesize_individual(input_ad_path)
if has_ctpg:
filesize_ctpg = XGBoost_utils.filesize_individual(input_ctpg_path)
else:
filesize_ctpg = 0
if Info_printing: print()
##Salience
if Info_printing: print('Processing Salience Information ......')
#Salience Map
S_map_ad = XGBoost_utils.Itti_Saliency(ad_img, scale_final=3)
if has_ctpg:
S_map_ctpg = XGBoost_utils.Itti_Saliency(ctpg_img, scale_final=3)
#K-Mean
threshold = 0.001
enhance_rate = 1
num_clusters = 3
if flag_full_page_ad:
width = S_map_ad.shape[1]
left = S_map_ad[:, :width//2]
vecs_left, km_left = XGBoost_utils.salience_matrix_conv(left,threshold,num_clusters,enhance_rate=enhance_rate)
_,scores_left,widths_left,D_left = XGBoost_utils.img_clusters(num_clusters, left, km_left.labels_, km_left.cluster_centers_, vecs_left)
right = S_map_ad[:, width//2:]
vecs_right, km_right = XGBoost_utils.salience_matrix_conv(right,threshold,num_clusters,enhance_rate=enhance_rate)
_,scores_right,widths_right,D_right = XGBoost_utils.img_clusters(num_clusters, right, km_right.labels_, km_right.cluster_centers_, vecs_right)
ad_sal = np.array(scores_left) + np.array(scores_right)
ad_width = np.array(widths_left) + np.array(widths_right); ad_width = np.log(ad_width+1)
ad_sig_obj = D_left + D_right
ctpg_sal = np.zeros_like(ad_sal)
ctpg_width = np.zeros_like(ad_width)
ctpg_sig_obj = 0
else:
vecs, km = XGBoost_utils.salience_matrix_conv(S_map_ad,threshold,num_clusters,enhance_rate=enhance_rate)
_,scores,widths,D = XGBoost_utils.img_clusters(num_clusters, S_map_ad, km.labels_, km.cluster_centers_, vecs)
ad_sal = np.array(scores)
ad_width = np.log(np.array(widths)+1)
ad_sig_obj = D
if has_ctpg:
vecs, km = XGBoost_utils.salience_matrix_conv(S_map_ctpg,threshold,num_clusters,enhance_rate=enhance_rate)
_,scores,widths,D = XGBoost_utils.img_clusters(num_clusters, S_map_ctpg, km.labels_, km.cluster_centers_, vecs)
ctpg_sal = np.array(scores)
ctpg_width = np.log(np.array(widths)+1)
ctpg_sig_obj = D
else:
ctpg_sal = np.zeros_like(ad_sal)
ctpg_width = np.zeros_like(ad_width)
ctpg_sig_obj = 0
if Info_printing: print()
##Texture
if Info_printing: print('Processing Textures and Symmetries ......')
kp_stat_ad, num_kp_ad, vlad_enc_ad = XGBoost_utils.VLAD_Encoding_SIFT(ad_img)
kp_stat_ctpg, num_kp_ctpg, vlad_enc_ctpg = XGBoost_utils.VLAD_Encoding_SIFT(ctpg_img)
symmetry_ad = XGBoost_utils.symmetry_lines(ad_img)
symmetry_ctpg = XGBoost_utils.symmetry_lines(ctpg_img)
##Number of Textboxes
if Info_printing: print('Processing Textboxes ......')
if TextBoxes is None:
#Need multiples of 32 in both dimensions
ad_num_textboxes = XGBoost_utils.text_detection_east(ad_img, text_detection_model_path)
if has_ctpg:
ctpg_num_textboxes = XGBoost_utils.text_detection_east(ctpg_img, text_detection_model_path)
else:
ctpg_num_textboxes = 0
else:
ad_num_textboxes, ctpg_num_textboxes = TextBoxes
if Info_printing: print()
##Objects and Topic Difference
if Info_printing: print('Processing Object and Topic Information ......')
if Info_printing: print('Loading Object Detection Model')
if Obj_and_Topics is None:
if obj_detection_model_pth is None:
model_obj = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, trust_repo=True, verbose=False)
else:
model_obj = torch.load(obj_detection_model_pth)
model_lda = None
dictionary = torch.load(training_ad_text_dictionary_path)
dutch_preposition = torch.load(training_lang_preposition_path)
ad_num_objs, ctpg_num_objs, ad_topic_weights, topic_Diff = XGBoost_utils.object_and_topic_variables(ad_img, ctpg_img, has_ctpg, dictionary,
dutch_preposition, training_language, model_obj,
model_lda, num_topic)
else:
ad_num_objs, ctpg_num_objs, ad_topic_soft_weights, ctpg_topic_soft_weights = Obj_and_Topics
indx = np.argmax(ad_topic_soft_weights)
ad_topic_weights = np.zeros(num_topic)
ad_topic_weights[indx] = 1
topic_Diff = XGBoost_utils.KL_dist(ad_topic_soft_weights, ctpg_topic_soft_weights)
if Info_printing: print()
##Left and Right Indicator
if Info_printing: print('Getting Left/Right Indicator ......')
if flag_full_page_ad:
Left_right_indicator = [1,1]
else:
if has_ctpg:
if ad_location == 0:
Left_right_indicator = [1,0]
elif ad_location == 1:
Left_right_indicator = [0,1]
else:
Left_right_indicator = [1,1]
else:
Left_right_indicator = [1,0]
if Info_printing: print()
##Product Category
if Info_printing: print('Getting Product Category Indicator ......')
if Product_Group is None:
group_ind = XGBoost_utils.product_category()
else:
group_ind = Product_Group
if Info_printing: print()
##Surface Sizes
if Info_printing: print('Getting Surface Sizes ......')
if surface_sizes is None:
ad_img = cv.cvtColor(ad_img, cv.COLOR_RGB2BGR)
print('Please select the bounding box for your ad (from top left to bottom right)')
A = XGBoost_utils.Region_Selection(ad_img)
print()
print('Please select the bounding box for brands (from top left to bottom right)')
B = XGBoost_utils.Region_Selection(ad_img)
print()
print('Please select the bounding box for texts (from top left to bottom right)')
T = XGBoost_utils.Region_Selection(ad_img)
surface_sizes = [B/A*100,(1-B/A-T/A)*100,T/A*100,np.log(sum(Left_right_indicator)*5)]
##Get All things together
if Info_printing: print('Predicting ......')
gaze = 0
if Gaze_Time_Type == 'ALL':
gaze_brand = 0
gaze_ad = 0
gaze_bs = 0
Vars_10 = []
Ad_Features = []
if save_index is not None:
saved_Features = []
for i in range(10):
if Vars_10_input is None:
#Var construction
pca_topic_transform = joblib.load('Topic_Embedding_PCAs/pca_model_'+str(i)+'.pkl')
ad_topics_curr = pca_topic_transform.transform(ad_embeddings)[:,:4][0]
ctpg_topics_curr = pca_topic_transform.transform(ctpg_embeddings)[:,:4][0]
ad_topic_weights = ad_topics_curr
topic_Diff = np.linalg.norm(ad_embeddings-ctpg_embeddings)
X = surface_sizes+[filesize_ad,filesize_ctpg]+list(ad_sal)+list(ctpg_sal)+list(ad_width)+list(ctpg_width)+[ad_sig_obj,ctpg_sig_obj]+[ad_num_textboxes,ctpg_num_textboxes,ad_num_objs,ctpg_num_objs]
X = np.array(X).reshape(1,len(X))
X = np.concatenate((X,kp_stat_ad,kp_stat_ctpg,num_kp_ad,num_kp_ctpg,vlad_enc_ad,vlad_enc_ctpg,symmetry_ad,symmetry_ctpg),axis=1)
X_for_typ = list(X[0,[0,1,2,3,4,6,7,8,12,13,14,18,20,22,38]+list(range(40,45))+list(range(24,31))+list(range(50,53))])+list(group_ind)+list(ad_topic_weights)
X_for_typ = np.array(X_for_typ).reshape(1,len(X_for_typ))
Ad_Features.append(X_for_typ)
if Gaze_Time_Type == 'Brand':
med = torch.load('Brand_Gaze_Model/typicality_train_medoid')
elif Gaze_Time_Type == 'Ad':
med = torch.load('Ad_Gaze_Model/typicality_train_medoid')
elif Gaze_Time_Type == 'BS':
med = torch.load('Brand_Share_Model/typicality_train_medoid')
elif Gaze_Time_Type == 'ALL':
med = torch.load('Brand_Gaze_Model/typicality_train_medoid')
typ = XGBoost_utils.typ_cat(med, X_for_typ, group_ind, np.abs)
if Media_Category is None:
Media_Category = np.zeros((1,9))
Var = np.concatenate([X,Media_Category,np.array(Left_right_indicator).reshape(1,2),ad_topic_weights.reshape(1,4),group_ind.reshape(1,38),np.array([topic_Diff.item(),typ.item()]).reshape(1,2)],axis=1)
if avgerage_out_index is not None:
Var[0, avgerage_out_index] = average_out_data
if zeroing_out_index is not None:
Var[0, zeroing_out_index] = 0
Vars_10.append(Var)
if save_index is not None:
saved_Features.append(Var[saved_Features])
else:
Var = Vars_10_input[i]
if Ad_Features_Only:
continue
if save_Var:
torch.save(Var, 'Var_Check_Across/'+task+'_Var_'+str(Ad_Nr)+'_'+str(Ctpg_Nr)+'.pt')
xgb_model = xgb.XGBRegressor()
if Gaze_Time_Type == 'Brand':
xgb_model.load_model('Brand_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
elif Gaze_Time_Type == 'Ad':
xgb_model.load_model('Ad_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
elif Gaze_Time_Type == 'BS':
xgb_model.load_model('Brand_Share_Model/10_models/Model_'+str(i+1)+'.json')
elif Gaze_Time_Type == 'ALL':
xgb_model.load_model('Brand_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
gaze_brand += xgb_model.predict(Var)
xgb_model.load_model('Ad_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
gaze_ad += xgb_model.predict(Var)
xgb_model.load_model('Brand_Share_Model/10_models/Model_'+str(i+1)+'.json')
gaze_bs += xgb_model.predict(Var)
gaze += xgb_model.predict(Var)
if Ad_Features_Only:
return Ad_Features
if return_save_fts:
return saved_Features
gaze = gaze/10
if Gaze_Time_Type == 'ALL':
gaze_brand = gaze_brand/10
gaze_ad = gaze_ad/10
gaze_bs = gaze_bs/10
if save_Var:
torch.save([gaze_brand,gaze_ad,gaze_bs], 'Gaze_Check_Across/'+task+'_Var_'+str(Ad_Nr)+'_'+str(Ctpg_Nr)+'.pt')
if len(gaze_brand) == 1:
return (np.exp(gaze_ad)-1).item(), (np.exp(gaze_brand)-1).item(), gaze_bs.item(), Vars_10
else:
return (np.exp(gaze_ad)-1), (np.exp(gaze_brand)-1), gaze_bs, Vars_10
else:
if Info_printing: print('The predicted '+Gaze_Time_Type+' gaze time is: ', (np.exp(gaze)-1).item() if Gaze_Time_Type != 'BS' else gaze.item())
if len(gaze) == 1:
return (np.exp(gaze)-1).item() if Gaze_Time_Type != 'BS' else gaze.item(), Vars_10
else:
return (np.exp(gaze)-1) if Gaze_Time_Type != 'BS' else gaze, Vars_10
def CNN_Prediction(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'): #Gaze_Type='AG' or 'BG'
gaze = 0
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
if Gaze_Type == 'AG':
a_temp = 0.2590; b_temp = 1.1781 #AG
elif Gaze_Type == 'BG':
a_temp = 0.2100; b_temp = 0.3541 #BG
elif Gaze_Type == 'BS':
a_temp = 1; b_temp = 0 #BS
for i in range(1):
net = CustomResNet()
net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(i)+'.pth',map_location=torch.device('cpu')))
net = net.to(device)
if Gaze_Type != 'BS':
with torch.no_grad():
pred = net.forward(adv_imgs, ctpg_imgs, ad_locations)
pred = torch.exp(pred*a_temp+b_temp) - 1
gaze += pred/10
else:
with torch.no_grad():
pred = net.forward(adv_imgs, ctpg_imgs, ad_locations)
gaze += pred/10
return gaze
def HeatMap_CNN(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'):
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
net = CustomResNet()
net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(0)+'.pth',map_location=torch.device('cpu')))
net = net.to(device)
pred = net(adv_imgs/255.0,ctpg_imgs/255.0,ad_locations)
print('heatmap pred: ', pred)
pred.backward()
# pull the gradients out of the model
gradients = net.get_activations_gradient()
# pool the gradients across the channels
pooled_gradients = torch.mean(gradients, dim=[0, 2, 3])
# get the activations of the last convolutional layer
activations = net.get_activations(adv_imgs).detach()
# weight the channels by corresponding gradients
for i in range(512):
activations[:, i, :, :] *= pooled_gradients[i]
# average the channels of the activations
heatmap = torch.mean(activations, dim=1).squeeze().to('cpu')
# relu on top of the heatmap
# expression (2) in https://arxiv.org/pdf/1610.02391.pdf
heatmap = np.maximum(heatmap, 0)
# normalize the heatmap
heatmap /= torch.max(heatmap)
img = torch.permute(adv_imgs[0],(1,2,0)).to(torch.uint8).numpy()
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
heatmap = cv.resize(heatmap.numpy(), (img.shape[1], img.shape[0]))
heatmap = np.uint8(255 * heatmap)
heatmap = cv.applyColorMap(heatmap, cv.COLORMAP_TURBO)
superimposed_img = heatmap * 0.8 + img * 0.5
superimposed_img /= np.max(superimposed_img)
superimposed_img = np.uint8(255 * superimposed_img)
return superimposed_img |