Spaces:
Sleeping
Sleeping
File size: 12,734 Bytes
b5246f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
#!/usr/bin/env python3
"""
TOC-Guided PDF Parser
Uses the Table of Contents to guide intelligent chunking that respects
document structure and hierarchy.
Author: Arthur Passuello
"""
import re
from typing import Dict, List, Optional, Tuple
from dataclasses import dataclass
@dataclass
class TOCEntry:
"""Represents a table of contents entry."""
title: str
page: int
level: int # 0 for chapters, 1 for sections, 2 for subsections
parent: Optional[str] = None
parent_title: Optional[str] = None # Added for hybrid parser compatibility
class TOCGuidedParser:
"""Parser that uses TOC to create structure-aware chunks."""
def __init__(self, target_chunk_size: int = 1400, min_chunk_size: int = 800,
max_chunk_size: int = 2000):
"""Initialize TOC-guided parser."""
self.target_chunk_size = target_chunk_size
self.min_chunk_size = min_chunk_size
self.max_chunk_size = max_chunk_size
def parse_toc(self, pages: List[Dict]) -> List[TOCEntry]:
"""Parse table of contents from pages."""
toc_entries = []
# Find TOC pages (usually early in document)
toc_pages = []
for i, page in enumerate(pages[:20]): # Check first 20 pages
page_text = page.get('text', '').lower()
if 'contents' in page_text or 'table of contents' in page_text:
toc_pages.append((i, page))
if not toc_pages:
print("No TOC found, using fallback structure detection")
return self._detect_structure_without_toc(pages)
# Parse TOC entries
for page_idx, page in toc_pages:
text = page.get('text', '')
lines = text.split('\n')
i = 0
while i < len(lines):
line = lines[i].strip()
# Skip empty lines and TOC header
if not line or 'contents' in line.lower():
i += 1
continue
# Pattern 1: "1.1 Title .... 23"
match1 = re.match(r'^(\d+(?:\.\d+)*)\s+(.+?)\s*\.{2,}\s*(\d+)$', line)
if match1:
number, title, page_num = match1.groups()
level = len(number.split('.')) - 1
toc_entries.append(TOCEntry(
title=title.strip(),
page=int(page_num),
level=level
))
i += 1
continue
# Pattern 2: Multi-line format
# "1.1"
# "Title"
# ". . . . 23"
if re.match(r'^(\d+(?:\.\d+)*)$', line):
number = line
if i + 1 < len(lines):
title_line = lines[i + 1].strip()
if i + 2 < len(lines):
dots_line = lines[i + 2].strip()
page_match = re.search(r'(\d+)\s*$', dots_line)
if page_match and '.' in dots_line:
title = title_line
page_num = int(page_match.group(1))
level = len(number.split('.')) - 1
toc_entries.append(TOCEntry(
title=title,
page=page_num,
level=level
))
i += 3
continue
# Pattern 3: "Chapter 1: Title ... 23"
match3 = re.match(r'^(Chapter|Section|Part)\s+(\d+):?\s+(.+?)\s*\.{2,}\s*(\d+)$', line, re.IGNORECASE)
if match3:
prefix, number, title, page_num = match3.groups()
level = 0 if prefix.lower() == 'chapter' else 1
toc_entries.append(TOCEntry(
title=f"{prefix} {number}: {title}",
page=int(page_num),
level=level
))
i += 1
continue
i += 1
# Add parent relationships
for i, entry in enumerate(toc_entries):
if entry.level > 0:
# Find parent (previous entry with lower level)
for j in range(i - 1, -1, -1):
if toc_entries[j].level < entry.level:
entry.parent = toc_entries[j].title
entry.parent_title = toc_entries[j].title # Set both for compatibility
break
return toc_entries
def _detect_structure_without_toc(self, pages: List[Dict]) -> List[TOCEntry]:
"""Fallback: detect structure from content patterns across ALL pages."""
entries = []
# Expanded patterns for better structure detection
chapter_patterns = [
re.compile(r'^(Chapter|CHAPTER)\s+(\d+|[IVX]+)(?:\s*[:\-]\s*(.+))?', re.MULTILINE),
re.compile(r'^(\d+)\s+([A-Z][^.]*?)(?:\s*\.{2,}\s*\d+)?$', re.MULTILINE), # "1 Introduction"
re.compile(r'^([A-Z][A-Z\s]{10,})$', re.MULTILINE), # ALL CAPS titles
]
section_patterns = [
re.compile(r'^(\d+\.\d+)\s+(.+?)(?:\s*\.{2,}\s*\d+)?$', re.MULTILINE), # "1.1 Section"
re.compile(r'^(\d+\.\d+\.\d+)\s+(.+?)(?:\s*\.{2,}\s*\d+)?$', re.MULTILINE), # "1.1.1 Subsection"
]
# Process ALL pages, not just first 20
for i, page in enumerate(pages):
text = page.get('text', '')
if not text.strip():
continue
# Find chapters with various patterns
for pattern in chapter_patterns:
for match in pattern.finditer(text):
if len(match.groups()) >= 2:
if len(match.groups()) >= 3 and match.group(3):
title = match.group(3).strip()
else:
title = match.group(2).strip() if match.group(2) else f"Section {match.group(1)}"
# Skip very short or likely false positives
if len(title) >= 3 and not re.match(r'^\d+$', title):
entries.append(TOCEntry(
title=title,
page=i + 1,
level=0
))
# Find sections
for pattern in section_patterns:
for match in pattern.finditer(text):
section_num = match.group(1)
title = match.group(2).strip() if len(match.groups()) >= 2 else f"Section {section_num}"
# Determine level by number of dots
level = section_num.count('.')
# Skip very short titles or obvious artifacts
if len(title) >= 3 and not re.match(r'^\d+$', title):
entries.append(TOCEntry(
title=title,
page=i + 1,
level=level
))
# If still no entries found, create page-based entries for full coverage
if not entries:
print("No structure patterns found, creating page-based sections for full coverage")
# Create sections every 10 pages to ensure full document coverage
for i in range(0, len(pages), 10):
start_page = i + 1
end_page = min(i + 10, len(pages))
title = f"Pages {start_page}-{end_page}"
entries.append(TOCEntry(
title=title,
page=start_page,
level=0
))
return entries
def create_chunks_from_toc(self, pdf_data: Dict, toc_entries: List[TOCEntry]) -> List[Dict]:
"""Create chunks based on TOC structure."""
chunks = []
pages = pdf_data.get('pages', [])
for i, entry in enumerate(toc_entries):
# Determine page range for this entry
start_page = entry.page - 1 # Convert to 0-indexed
# Find end page (start of next entry at same or higher level)
end_page = len(pages)
for j in range(i + 1, len(toc_entries)):
if toc_entries[j].level <= entry.level:
end_page = toc_entries[j].page - 1
break
# Extract text for this section
section_text = []
for page_idx in range(max(0, start_page), min(end_page, len(pages))):
page_text = pages[page_idx].get('text', '')
if page_text.strip():
section_text.append(page_text)
if not section_text:
continue
full_text = '\n\n'.join(section_text)
# Create chunks from section text
if len(full_text) <= self.max_chunk_size:
# Single chunk for small sections
chunks.append({
'text': full_text.strip(),
'title': entry.title,
'parent_title': entry.parent_title or entry.parent or '',
'level': entry.level,
'page': entry.page,
'context': f"From {entry.title}",
'metadata': {
'parsing_method': 'toc_guided',
'section_title': entry.title,
'hierarchy_level': entry.level
}
})
else:
# Split large sections into chunks
section_chunks = self._split_text_into_chunks(full_text)
for j, chunk_text in enumerate(section_chunks):
chunks.append({
'text': chunk_text.strip(),
'title': f"{entry.title} (Part {j+1})",
'parent_title': entry.parent_title or entry.parent or '',
'level': entry.level,
'page': entry.page,
'context': f"Part {j+1} of {entry.title}",
'metadata': {
'parsing_method': 'toc_guided',
'section_title': entry.title,
'hierarchy_level': entry.level,
'part_number': j + 1,
'total_parts': len(section_chunks)
}
})
return chunks
def _split_text_into_chunks(self, text: str) -> List[str]:
"""Split text into chunks while preserving sentence boundaries."""
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks = []
current_chunk = []
current_size = 0
for sentence in sentences:
sentence_size = len(sentence)
if current_size + sentence_size > self.target_chunk_size and current_chunk:
# Save current chunk
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_size = sentence_size
else:
current_chunk.append(sentence)
current_size += sentence_size + 1 # +1 for space
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def parse_pdf_with_toc_guidance(pdf_data: Dict, **kwargs) -> List[Dict]:
"""Main entry point for TOC-guided parsing."""
parser = TOCGuidedParser(**kwargs)
# Parse TOC
pages = pdf_data.get('pages', [])
toc_entries = parser.parse_toc(pages)
print(f"Found {len(toc_entries)} TOC entries")
if not toc_entries:
print("No TOC entries found, falling back to basic chunking")
from .chunker import chunk_technical_text
return chunk_technical_text(pdf_data.get('text', ''))
# Create chunks based on TOC
chunks = parser.create_chunks_from_toc(pdf_data, toc_entries)
print(f"Created {len(chunks)} chunks from TOC structure")
return chunks |