Spaces:
Running
on
Zero
Running
on
Zero
impl CanaryConfig from ui
Browse files- app.py +31 -10
- app/canary_speech_engine.py +114 -5
app.py
CHANGED
|
@@ -52,25 +52,39 @@ reset_all_active_session_hash_code()
|
|
| 52 |
|
| 53 |
theme,css_style = get_custom_theme()
|
| 54 |
|
| 55 |
-
from omegaconf import OmegaConf
|
| 56 |
-
cfg = OmegaConf.load('app/config.yaml')
|
| 57 |
# logger.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
|
| 58 |
-
from app.canary_speech_engine import CanarySpeechEngine
|
| 59 |
from app.silero_vad_engine import Silero_Vad_Engine
|
| 60 |
from app.streaming_audio_processor import StreamingAudioProcessor,StreamingAudioProcessorConfig
|
| 61 |
|
| 62 |
|
| 63 |
-
asr_model = nemo_asr.models.ASRModel.from_pretrained(
|
| 64 |
-
canary_speech_engine = CanarySpeechEngine(asr_model,cfg)
|
| 65 |
-
silero_vad_engine = Silero_Vad_Engine()
|
| 66 |
streaming_audio_processor_config = StreamingAudioProcessorConfig(
|
| 67 |
read_size=4000,
|
| 68 |
silence_threshold_chunks=1
|
| 69 |
)
|
| 70 |
-
|
| 71 |
@spaces.GPU
|
| 72 |
-
def task(session_id: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
"""Continuously read and delete .npz chunks while task is active."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
active_flag = get_active_task_flag_file(session_id)
|
| 75 |
with open(active_flag, "w") as f:
|
| 76 |
f.write("1")
|
|
@@ -319,6 +333,7 @@ with gr.Blocks(theme=theme, css=css_style) as demo:
|
|
| 319 |
interactive=False,
|
| 320 |
visible=False
|
| 321 |
)
|
|
|
|
| 322 |
stop_stream_button = gr.Button("Stop Streaming", visible=False)
|
| 323 |
|
| 324 |
transcription_output = gr.Textbox(
|
|
@@ -365,9 +380,15 @@ with gr.Blocks(theme=theme, css=css_style) as demo:
|
|
| 365 |
|
| 366 |
accumulated = ""
|
| 367 |
yield f"Starting {task_type.lower()}...\n\n",gr.update(visible=False),gr.update(visible=True)
|
| 368 |
-
|
| 369 |
# Boucle sur le générateur de `task()`
|
| 370 |
-
for msg in task(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
accumulated += msg
|
| 372 |
yield accumulated,gr.update(visible=False),gr.update(visible=True)
|
| 373 |
|
|
|
|
| 52 |
|
| 53 |
theme,css_style = get_custom_theme()
|
| 54 |
|
|
|
|
|
|
|
| 55 |
# logger.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
|
| 56 |
+
from app.canary_speech_engine import CanarySpeechEngine,CanaryConfig
|
| 57 |
from app.silero_vad_engine import Silero_Vad_Engine
|
| 58 |
from app.streaming_audio_processor import StreamingAudioProcessor,StreamingAudioProcessorConfig
|
| 59 |
|
| 60 |
|
| 61 |
+
asr_model = nemo_asr.models.ASRModel.from_pretrained("nvidia/canary-1b-v2")
|
|
|
|
|
|
|
| 62 |
streaming_audio_processor_config = StreamingAudioProcessorConfig(
|
| 63 |
read_size=4000,
|
| 64 |
silence_threshold_chunks=1
|
| 65 |
)
|
| 66 |
+
|
| 67 |
@spaces.GPU
|
| 68 |
+
def task(session_id: str,
|
| 69 |
+
task_type, lang_source, lang_target,
|
| 70 |
+
chunk_secs, left_context_secs, right_context_secs,
|
| 71 |
+
streaming_policy, alignatt_thr, waitk_lagging,
|
| 72 |
+
exclude_sink_frames, xatt_scores_layer, hallucinations_detector
|
| 73 |
+
):
|
| 74 |
"""Continuously read and delete .npz chunks while task is active."""
|
| 75 |
+
yield f"initializing the CanarySpeechEngine and Silero_Vad_Engine\n\n"
|
| 76 |
+
# initialize the CanarySpeechEngine and Silero_Vad_Engine
|
| 77 |
+
conf = CanaryConfig.from_params(
|
| 78 |
+
task_type, lang_source, lang_target,
|
| 79 |
+
chunk_secs, left_context_secs, right_context_secs,
|
| 80 |
+
streaming_policy, alignatt_thr, waitk_lagging,
|
| 81 |
+
exclude_sink_frames, xatt_scores_layer, hallucinations_detector
|
| 82 |
+
)
|
| 83 |
+
canary_speech_engine = CanarySpeechEngine(asr_model,conf)
|
| 84 |
+
silero_vad_engine = Silero_Vad_Engine()
|
| 85 |
+
streamer = StreamingAudioProcessor(speech_engine=canary_speech_engine,vad_engine=silero_vad_engine,cfg=streaming_audio_processor_config)
|
| 86 |
+
yield f"initialized the CanarySpeechEngine and Silero_Vad_Engine\n\n"
|
| 87 |
+
yield f"Task started for session {session_id}\n\n"
|
| 88 |
active_flag = get_active_task_flag_file(session_id)
|
| 89 |
with open(active_flag, "w") as f:
|
| 90 |
f.write("1")
|
|
|
|
| 333 |
interactive=False,
|
| 334 |
visible=False
|
| 335 |
)
|
| 336 |
+
|
| 337 |
stop_stream_button = gr.Button("Stop Streaming", visible=False)
|
| 338 |
|
| 339 |
transcription_output = gr.Textbox(
|
|
|
|
| 380 |
|
| 381 |
accumulated = ""
|
| 382 |
yield f"Starting {task_type.lower()}...\n\n",gr.update(visible=False),gr.update(visible=True)
|
| 383 |
+
|
| 384 |
# Boucle sur le générateur de `task()`
|
| 385 |
+
for msg in task(
|
| 386 |
+
session_hash_code,
|
| 387 |
+
task_type, lang_source, lang_target,
|
| 388 |
+
chunk_secs, left_context_secs, right_context_secs,
|
| 389 |
+
streaming_policy, alignatt_thr, waitk_lagging,
|
| 390 |
+
exclude_sink_frames, xatt_scores_layer, hallucinations_detector
|
| 391 |
+
):
|
| 392 |
accumulated += msg
|
| 393 |
yield accumulated,gr.update(visible=False),gr.update(visible=True)
|
| 394 |
|
app/canary_speech_engine.py
CHANGED
|
@@ -32,6 +32,115 @@ from app.logger_config import (
|
|
| 32 |
)
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def make_divisible_by(num: int, factor: int) -> int:
|
| 36 |
"""Make num divisible by factor"""
|
| 37 |
return (num // factor) * factor
|
|
@@ -42,18 +151,18 @@ class CanarySpeechEngine(IStreamingSpeechEngine):
|
|
| 42 |
Encapsulates the state and logic for streaming audio transcription
|
| 43 |
using an internally loaded Canary model.
|
| 44 |
"""
|
| 45 |
-
def __init__(self,asr_model, cfg:
|
| 46 |
"""
|
| 47 |
Initializes the speech engine and loads the ASR model.
|
| 48 |
|
| 49 |
Args:
|
| 50 |
cfg: An OmegaConf object containing 'model' and 'streaming' configs.
|
| 51 |
"""
|
| 52 |
-
self.cfg = cfg # Store the full config
|
| 53 |
|
| 54 |
# Setup device and dtype from config
|
| 55 |
-
self.map_location = get_inference_device(cuda=
|
| 56 |
-
self.compute_dtype = get_inference_dtype(
|
| 57 |
logging.info(f"Inference will be on device: {self.map_location} with dtype: {self.compute_dtype}")
|
| 58 |
|
| 59 |
# Load the model internally
|
|
@@ -71,7 +180,7 @@ class CanarySpeechEngine(IStreamingSpeechEngine):
|
|
| 71 |
|
| 72 |
def _setup_model(self,asr_model, model_cfg: OmegaConf, map_location: str):
|
| 73 |
"""Loads the pretrained ASR model and configures it for inference."""
|
| 74 |
-
logging.info(f"Loading model
|
| 75 |
start_time = time.time()
|
| 76 |
try:
|
| 77 |
asr_model = asr_model.to(map_location)
|
|
|
|
| 32 |
)
|
| 33 |
|
| 34 |
|
| 35 |
+
from dataclasses import dataclass
|
| 36 |
+
from typing import Optional, Literal
|
| 37 |
+
|
| 38 |
+
@dataclass
|
| 39 |
+
class CanaryConfig:
|
| 40 |
+
chunk_secs: float = 1.0
|
| 41 |
+
left_context_secs: float = 20.0
|
| 42 |
+
right_context_secs: float = 0.5
|
| 43 |
+
cuda: Optional[bool] = None
|
| 44 |
+
allow_mps: bool = True
|
| 45 |
+
compute_dtype: Optional[str] = None
|
| 46 |
+
matmul_precision: str = "high"
|
| 47 |
+
batch_size= 1
|
| 48 |
+
decoding: dict = None
|
| 49 |
+
streaming_policy: str = "alignatt"
|
| 50 |
+
alignatt_thr: float = 8.0
|
| 51 |
+
waitk_lagging: int = 2
|
| 52 |
+
exclude_sink_frames: int = 8
|
| 53 |
+
xatt_scores_layer: int = -2
|
| 54 |
+
max_tokens_per_alignatt_step: int = 30
|
| 55 |
+
max_generation_length: int = 512
|
| 56 |
+
use_avgpool_for_alignatt: bool = False
|
| 57 |
+
hallucinations_detector: bool = True
|
| 58 |
+
|
| 59 |
+
prompt: dict = None
|
| 60 |
+
pnc: str = "no"
|
| 61 |
+
task: str = "asr"
|
| 62 |
+
source_lang: str = "fr"
|
| 63 |
+
target_lang: str = "fr"
|
| 64 |
+
timestamps: bool = True
|
| 65 |
+
|
| 66 |
+
def __post_init__(self):
|
| 67 |
+
if self.decoding is None:
|
| 68 |
+
self.decoding = {
|
| 69 |
+
"streaming_policy": self.streaming_policy,
|
| 70 |
+
"alignatt_thr": self.alignatt_thr,
|
| 71 |
+
"waitk_lagging": self.waitk_lagging,
|
| 72 |
+
"exclude_sink_frames": self.exclude_sink_frames,
|
| 73 |
+
"xatt_scores_layer": self.xatt_scores_layer,
|
| 74 |
+
"max_tokens_per_alignatt_step": self.max_tokens_per_alignatt_step,
|
| 75 |
+
"max_generation_length": self.max_generation_length,
|
| 76 |
+
"use_avgpool_for_alignatt": self.use_avgpool_for_alignatt,
|
| 77 |
+
"hallucinations_detector": self.hallucinations_detector
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
if self.prompt is None:
|
| 81 |
+
self.prompt = {
|
| 82 |
+
"pnc": self.pnc,
|
| 83 |
+
"task": self.task,
|
| 84 |
+
"source_lang": self.source_lang,
|
| 85 |
+
"target_lang": self.target_lang,
|
| 86 |
+
"timestamps": self.timestamps
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
def toOmegaConf(self) -> OmegaConf:
|
| 90 |
+
"""Convert the config to OmegaConf format"""
|
| 91 |
+
config_dict = {
|
| 92 |
+
"chunk_secs": self.chunk_secs,
|
| 93 |
+
"left_context_secs": self.left_context_secs,
|
| 94 |
+
"right_context_secs": self.right_context_secs,
|
| 95 |
+
"cuda": self.cuda,
|
| 96 |
+
"allow_mps": self.allow_mps,
|
| 97 |
+
"compute_dtype": self.compute_dtype,
|
| 98 |
+
"matmul_precision": self.matmul_precision,
|
| 99 |
+
"batch_size": self.batch_size,
|
| 100 |
+
"decoding": self.decoding,
|
| 101 |
+
"prompt": self.prompt
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
# Remove None values
|
| 105 |
+
filtered_dict = {k: v for k, v in config_dict.items() if v is not None}
|
| 106 |
+
|
| 107 |
+
return OmegaConf.create(filtered_dict)
|
| 108 |
+
|
| 109 |
+
@classmethod
|
| 110 |
+
def from_params(
|
| 111 |
+
cls,
|
| 112 |
+
task_type: str,
|
| 113 |
+
source_lang: str,
|
| 114 |
+
target_lang: str,
|
| 115 |
+
chunk_secs: float = 1.0,
|
| 116 |
+
left_context_secs: float = 20.0,
|
| 117 |
+
right_context_secs: float = 0.5,
|
| 118 |
+
streaming_policy: str = "alignatt",
|
| 119 |
+
alignatt_thr: float = 8.0,
|
| 120 |
+
waitk_lagging: int = 2,
|
| 121 |
+
exclude_sink_frames: int = 8,
|
| 122 |
+
xatt_scores_layer: int = -2,
|
| 123 |
+
hallucinations_detector: bool = True
|
| 124 |
+
):
|
| 125 |
+
"""Create a CanaryConfig instance from parameters"""
|
| 126 |
+
# Convert task type to model task
|
| 127 |
+
task = "asr" if task_type == "Transcription" else "ast"
|
| 128 |
+
|
| 129 |
+
return cls(
|
| 130 |
+
chunk_secs=chunk_secs,
|
| 131 |
+
left_context_secs=left_context_secs,
|
| 132 |
+
right_context_secs=right_context_secs,
|
| 133 |
+
streaming_policy=streaming_policy,
|
| 134 |
+
alignatt_thr=alignatt_thr,
|
| 135 |
+
waitk_lagging=waitk_lagging,
|
| 136 |
+
exclude_sink_frames=exclude_sink_frames,
|
| 137 |
+
xatt_scores_layer=xatt_scores_layer,
|
| 138 |
+
hallucinations_detector=hallucinations_detector,
|
| 139 |
+
task=task,
|
| 140 |
+
source_lang=source_lang,
|
| 141 |
+
target_lang=target_lang
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
def make_divisible_by(num: int, factor: int) -> int:
|
| 145 |
"""Make num divisible by factor"""
|
| 146 |
return (num // factor) * factor
|
|
|
|
| 151 |
Encapsulates the state and logic for streaming audio transcription
|
| 152 |
using an internally loaded Canary model.
|
| 153 |
"""
|
| 154 |
+
def __init__(self,asr_model, cfg: CanaryConfig):
|
| 155 |
"""
|
| 156 |
Initializes the speech engine and loads the ASR model.
|
| 157 |
|
| 158 |
Args:
|
| 159 |
cfg: An OmegaConf object containing 'model' and 'streaming' configs.
|
| 160 |
"""
|
| 161 |
+
self.cfg = cfg.toOmegaConf() # Store the full config
|
| 162 |
|
| 163 |
# Setup device and dtype from config
|
| 164 |
+
self.map_location = get_inference_device(cuda=None, allow_mps=self.cfg.allow_mps)
|
| 165 |
+
self.compute_dtype = get_inference_dtype(None, device=self.map_location)
|
| 166 |
logging.info(f"Inference will be on device: {self.map_location} with dtype: {self.compute_dtype}")
|
| 167 |
|
| 168 |
# Load the model internally
|
|
|
|
| 180 |
|
| 181 |
def _setup_model(self,asr_model, model_cfg: OmegaConf, map_location: str):
|
| 182 |
"""Loads the pretrained ASR model and configures it for inference."""
|
| 183 |
+
logging.info(f"Loading model ...")
|
| 184 |
start_time = time.time()
|
| 185 |
try:
|
| 186 |
asr_model = asr_model.to(map_location)
|