Spaces:
Sleeping
Sleeping
File size: 7,354 Bytes
f628dc0 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f 5d61222 264b36f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import json
import os
import fitz # PyMuPDF
# π¦ Load Granite Model
model_name = "ibm-granite/granite-3.3-2b-instruct"
print("π Loading model...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"β
Model loaded on {device}")
# πΎ Load or Initialize Users
user_file = "users.json"
if os.path.exists(user_file):
with open(user_file, "r") as f:
users = json.load(f)
else:
users = {
"alice": {"password": "1234", "role": "student", "progress": {}},
"bob": {"password": "abcd", "role": "teacher", "progress": {}},
"admin": {"password": "admin", "role": "admin", "progress": {}}
}
# πΎ Save Progress
def save_users():
with open(user_file, "w") as f:
json.dump(users, f, indent=2)
# π§ Session State
session_state = {"user": None}
# π Register & Login
def register(username, password, role):
if username in users:
return "β Username already exists!"
if role not in ["student", "teacher", "admin"]:
return "β Role must be student, teacher, or admin"
users[username] = {"password": password, "role": role, "progress": {}}
save_users()
return f"β
Registered {username} as {role}!"
def login(username, password):
user = users.get(username)
if user and user["password"] == password:
session_state["user"] = {"name": username, "role": user["role"]}
return f"β
Logged in as {username} ({user['role']})"
else:
return "β Login failed"
# π Tutor
def ai_tutor(subject, topic):
if not session_state["user"]:
return "β οΈ Please login first."
role = session_state["user"]["role"]
prompt = (
f"You are a helpful AI tutor for a {role}. Explain the following topic in {subject}:\n\n"
f"Topic: {topic}\n\nExplanation:"
)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=300)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
user = session_state["user"]["name"]
users[user]["progress"][f"Tutor: {topic}"] = "Learned"
save_users()
return response
# π Topic Quiz
def generate_quiz(subject, topic):
if not session_state["user"]:
return "β οΈ Please login first."
role = session_state["user"]["role"]
prompt = (
f"You are an AI quiz generator for a {role}. "
f"Create 3 short quiz questions with answers about {topic} in {subject}.\n\n"
"Format:\nQ1: ...\nA1: ...\nQ2: ...\nA2: ...\nQ3: ...\nA3: ..."
)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=300)
quiz = tokenizer.decode(outputs[0], skip_special_tokens=True)
user = session_state["user"]["name"]
users[user]["progress"][f"Quiz: {topic}"] = "Generated"
save_users()
return quiz
# π PDF Text Extractor
def extract_text_from_pdf(file):
doc = fitz.open(stream=file.read(), filetype="pdf")
return "".join([page.get_text() for page in doc])
# π§Ύ PDF Quiz
def generate_quiz_from_pdf(file):
if not session_state["user"]:
return "β οΈ Please login first."
text = extract_text_from_pdf(file)
prompt = f"You are a teacher. Generate 5 questions with answers from this PDF:\n\n{text}"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=300)
quiz = tokenizer.decode(outputs[0], skip_special_tokens=True)
user = session_state["user"]["name"]
users[user]["progress"]["PDF Quiz"] = "Generated"
save_users()
return quiz
# π PDF Summary + Explanation
def summarize_pdf(file):
if not session_state["user"]:
return "β οΈ Please login first."
text = extract_text_from_pdf(file)
summary_prompt = f"Summarize the following text in bullet points:\n\n{text}"
summary = generate_response(summary_prompt)
explain_prompt = f"Explain the following for a 15-year-old student:\n\n{summary}"
explanation = generate_response(explain_prompt)
user = session_state["user"]["name"]
users[user]["progress"]["PDF Summary"] = "Completed"
save_users()
return f"πΉ Summary:\n{summary}\n\nπ Explanation:\n{explanation}"
# π Utility
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=300)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# π View Progress
def view_progress():
if not session_state["user"]:
return "β οΈ Please login first."
user = session_state["user"]["name"]
progress = users[user]["progress"]
return "\n".join([f"{k}: {v}" for k, v in progress.items()]) or "No progress yet."
# π Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π EduTutor AI with PDF, Quiz & Progress Tracker")
with gr.Tab("π Register"):
reg_username = gr.Textbox(label="Choose Username")
reg_password = gr.Textbox(label="Choose Password", type="password")
reg_role = gr.Dropdown(choices=["student", "teacher", "admin"], label="Role")
reg_btn = gr.Button("Register")
reg_status = gr.Textbox(label="Status", interactive=False)
reg_btn.click(register, [reg_username, reg_password, reg_role], reg_status)
with gr.Tab("π Login"):
login_username = gr.Textbox(label="Username")
login_password = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login")
login_status = gr.Textbox(label="Status", interactive=False)
login_btn.click(login, [login_username, login_password], login_status)
with gr.Tab("π AI Tutor"):
subject = gr.Textbox(label="Subject (e.g. Math)")
topic = gr.Textbox(label="Topic to explain")
tutor_btn = gr.Button("Ask Tutor")
tutor_out = gr.Textbox(label="Explanation")
tutor_btn.click(ai_tutor, [subject, topic], tutor_out)
with gr.Tab("π Topic Quiz"):
q_subject = gr.Textbox(label="Subject")
q_topic = gr.Textbox(label="Topic")
quiz_btn = gr.Button("Generate Quiz")
quiz_out = gr.Textbox(label="Quiz")
quiz_btn.click(generate_quiz, [q_subject, q_topic], quiz_out)
with gr.Tab("π PDF Quiz"):
pdf_file = gr.File(label="Upload PDF", type="binary")
pdf_quiz_btn = gr.Button("Generate Quiz from PDF")
pdf_quiz_out = gr.Textbox(label="PDF-based Quiz")
pdf_quiz_btn.click(generate_quiz_from_pdf, inputs=pdf_file, outputs=pdf_quiz_out)
with gr.Tab("π PDF Summary"):
pdf_sum_file = gr.File(label="Upload PDF", type="binary")
sum_btn = gr.Button("Summarize & Explain")
sum_out = gr.Textbox(label="Summary & Explanation")
sum_btn.click(summarize_pdf, inputs=pdf_sum_file, outputs=sum_out)
with gr.Tab("π Progress Tracker"):
prog_btn = gr.Button("Show My Progress")
prog_out = gr.Textbox(label="Progress")
prog_btn.click(view_progress, outputs=prog_out)
demo.launch(share=True)
|