Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDiachronic Word Embeddings Reveal Statistical Laws of Semantic Change
Understanding how words change their meanings over time is key to models of language and cultural evolution, but historical data on meaning is scarce, making theories hard to develop and test. Word embeddings show promise as a diachronic tool, but have not been carefully evaluated. We develop a robust methodology for quantifying semantic change by evaluating word embeddings (PPMI, SVD, word2vec) against known historical changes. We then use this methodology to reveal statistical laws of semantic evolution. Using six historical corpora spanning four languages and two centuries, we propose two quantitative laws of semantic change: (i) the law of conformity---the rate of semantic change scales with an inverse power-law of word frequency; (ii) the law of innovation---independent of frequency, words that are more polysemous have higher rates of semantic change.
Norm of Word Embedding Encodes Information Gain
Distributed representations of words encode lexical semantic information, but what type of information is encoded and how? Focusing on the skip-gram with negative-sampling method, we found that the squared norm of static word embedding encodes the information gain conveyed by the word; the information gain is defined by the Kullback-Leibler divergence of the co-occurrence distribution of the word to the unigram distribution. Our findings are explained by the theoretical framework of the exponential family of probability distributions and confirmed through precise experiments that remove spurious correlations arising from word frequency. This theory also extends to contextualized word embeddings in language models or any neural networks with the softmax output layer. We also demonstrate that both the KL divergence and the squared norm of embedding provide a useful metric of the informativeness of a word in tasks such as keyword extraction, proper-noun discrimination, and hypernym discrimination.
SimpleBooks: Long-term dependency book dataset with simplified English vocabulary for word-level language modeling
With language modeling becoming the popular base task for unsupervised representation learning in Natural Language Processing, it is important to come up with new architectures and techniques for faster and better training of language models. However, due to a peculiarity of languages -- the larger the dataset, the higher the average number of times a word appears in that dataset -- datasets of different sizes have very different properties. Architectures performing well on small datasets might not perform well on larger ones. For example, LSTM models perform well on WikiText-2 but poorly on WikiText-103, while Transformer models perform well on WikiText-103 but not on WikiText-2. For setups like architectural search, this is a challenge since it is prohibitively costly to run a search on the full dataset but it is not indicative to experiment on smaller ones. In this paper, we introduce SimpleBooks, a small dataset with the average word frequency as high as that of much larger ones. Created from 1,573 Gutenberg books with the highest ratio of word-level book length to vocabulary size, SimpleBooks contains 92M word-level tokens, on par with WikiText-103 (103M tokens), but has the vocabulary of 98K, a third of WikiText-103's. SimpleBooks can be downloaded from https://dldata-public.s3.us-east-2.amazonaws.com/simplebooks.zip.
Beyond Film Subtitles: Is YouTube the Best Approximation of Spoken Vocabulary?
Word frequency is a key variable in psycholinguistics, useful for modeling human familiarity with words even in the era of large language models (LLMs). Frequency in film subtitles has proved to be a particularly good approximation of everyday language exposure. For many languages, however, film subtitles are not easily available, or are overwhelmingly translated from English. We demonstrate that frequencies extracted from carefully processed YouTube subtitles provide an approximation comparable to, and often better than, the best currently available resources. Moreover, they are available for languages for which a high-quality subtitle or speech corpus does not exist. We use YouTube subtitles to construct frequency norms for five diverse languages, Chinese, English, Indonesian, Japanese, and Spanish, and evaluate their correlation with lexical decision time, word familiarity, and lexical complexity. In addition to being strongly correlated with two psycholinguistic variables, a simple linear regression on the new frequencies achieves a new high score on a lexical complexity prediction task in English and Japanese, surpassing both models trained on film subtitle frequencies and the LLM GPT-4. Our code, the frequency lists, fastText word embeddings, and statistical language models are freely available at https://github.com/naist-nlp/tubelex.
Zipfian Whitening
The word embedding space in neural models is skewed, and correcting this can improve task performance. We point out that most approaches for modeling, correcting, and measuring the symmetry of an embedding space implicitly assume that the word frequencies are uniform; in reality, word frequencies follow a highly non-uniform distribution, known as Zipf's law. Surprisingly, simply performing PCA whitening weighted by the empirical word frequency that follows Zipf's law significantly improves task performance, surpassing established baselines. From a theoretical perspective, both our approach and existing methods can be clearly categorized: word representations are distributed according to an exponential family with either uniform or Zipfian base measures. By adopting the latter approach, we can naturally emphasize informative low-frequency words in terms of their vector norm, which becomes evident from the information-geometric perspective, and in terms of the loss functions for imbalanced classification. Additionally, our theory corroborates that popular natural language processing methods, such as skip-gram negative sampling, WhiteningBERT, and headless language models, work well just because their word embeddings encode the empirical word frequency into the underlying probabilistic model.
DebCSE: Rethinking Unsupervised Contrastive Sentence Embedding Learning in the Debiasing Perspective
Several prior studies have suggested that word frequency biases can cause the Bert model to learn indistinguishable sentence embeddings. Contrastive learning schemes such as SimCSE and ConSERT have already been adopted successfully in unsupervised sentence embedding to improve the quality of embeddings by reducing this bias. However, these methods still introduce new biases such as sentence length bias and false negative sample bias, that hinders model's ability to learn more fine-grained semantics. In this paper, we reexamine the challenges of contrastive sentence embedding learning from a debiasing perspective and argue that effectively eliminating the influence of various biases is crucial for learning high-quality sentence embeddings. We think all those biases are introduced by simple rules for constructing training data in contrastive learning and the key for contrastive learning sentence embedding is to mimic the distribution of training data in supervised machine learning in unsupervised way. We propose a novel contrastive framework for sentence embedding, termed DebCSE, which can eliminate the impact of these biases by an inverse propensity weighted sampling method to select high-quality positive and negative pairs according to both the surface and semantic similarity between sentences. Extensive experiments on semantic textual similarity (STS) benchmarks reveal that DebCSE significantly outperforms the latest state-of-the-art models with an average Spearman's correlation coefficient of 80.33% on BERTbase.
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation
Pre-training (PT) and back-translation (BT) are two simple and powerful methods to utilize monolingual data for improving the model performance of neural machine translation (NMT). This paper takes the first step to investigate the complementarity between PT and BT. We introduce two probing tasks for PT and BT respectively and find that PT mainly contributes to the encoder module while BT brings more benefits to the decoder. Experimental results show that PT and BT are nicely complementary to each other, establishing state-of-the-art performances on the WMT16 English-Romanian and English-Russian benchmarks. Through extensive analyses on sentence originality and word frequency, we also demonstrate that combining Tagged BT with PT is more helpful to their complementarity, leading to better translation quality. Source code is freely available at https://github.com/SunbowLiu/PTvsBT.
Incorporating Context into Subword Vocabularies
Most current popular subword tokenizers are trained based on word frequency statistics over a corpus, without considering information about co-occurrence or context. Nevertheless, the resulting vocabularies are used in language models' highly contextualized settings. We present SaGe, a tokenizer that tailors subwords for their downstream use by baking in the contextualized signal at the vocabulary creation phase. We show that SaGe does a better job than current widespread tokenizers in keeping token contexts cohesive, while not incurring a large price in terms of encoding efficiency or domain robustness. SaGe improves performance on English GLUE classification tasks as well as on NER, and on Inference and NER in Turkish, demonstrating its robustness to language properties such as morphological exponence and agglutination.
ROME: Memorization Insights from Text, Probability and Hidden State in Large Language Models
Probing the memorization of large language models holds significant importance. Previous works have established metrics for quantifying memorization, explored various influencing factors, such as data duplication, model size, and prompt length, and evaluated memorization by comparing model outputs with training corpora. However, the training corpora are of enormous scale and its pre-processing is time-consuming. To explore memorization without accessing training data, we propose a novel approach, named ROME, wherein memorization is explored by comparing disparities across memorized and non-memorized. Specifically, models firstly categorize the selected samples into memorized and non-memorized groups, and then comparing the demonstrations in the two groups from the insights of text, probability, and hidden state. Experimental findings show the disparities in factors including word length, part-of-speech, word frequency, mean and variance, just to name a few.
Low-resource Bilingual Dialect Lexicon Induction with Large Language Models
Bilingual word lexicons are crucial tools for multilingual natural language understanding and machine translation tasks, as they facilitate the mapping of words in one language to their synonyms in another language. To achieve this, numerous papers have explored bilingual lexicon induction (BLI) in high-resource scenarios, using a typical pipeline consisting of two unsupervised steps: bitext mining and word alignment, both of which rely on pre-trained large language models~(LLMs). In this paper, we present an analysis of the BLI pipeline for German and two of its dialects, Bavarian and Alemannic. This setup poses several unique challenges, including the scarcity of resources, the relatedness of the languages, and the lack of standardization in the orthography of dialects. To evaluate the BLI outputs, we analyze them with respect to word frequency and pairwise edit distance. Additionally, we release two evaluation datasets comprising 1,500 bilingual sentence pairs and 1,000 bilingual word pairs. They were manually judged for their semantic similarity for each Bavarian-German and Alemannic-German language pair.
Rule Based Stemmer in Urdu
Urdu is a combination of several languages like Arabic, Hindi, English, Turkish, Sanskrit etc. It has a complex and rich morphology. This is the reason why not much work has been done in Urdu language processing. Stemming is used to convert a word into its respective root form. In stemming, we separate the suffix and prefix from the word. It is useful in search engines, natural language processing and word processing, spell checkers, word parsing, word frequency and count studies. This paper presents a rule based stemmer for Urdu. The stemmer that we have discussed here is used in information retrieval. We have also evaluated our results by verifying it with a human expert.
Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts
The use of robo-readers to analyze news texts is an emerging technology trend in computational finance. In recent research, a substantial effort has been invested to develop sophisticated financial polarity-lexicons that can be used to investigate how financial sentiments relate to future company performance. However, based on experience from other fields, where sentiment analysis is commonly applied, it is well-known that the overall semantic orientation of a sentence may differ from the prior polarity of individual words. The objective of this article is to investigate how semantic orientations can be better detected in financial and economic news by accommodating the overall phrase-structure information and domain-specific use of language. Our three main contributions are: (1) establishment of a human-annotated finance phrase-bank, which can be used as benchmark for training and evaluating alternative models; (2) presentation of a technique to enhance financial lexicons with attributes that help to identify expected direction of events that affect overall sentiment; (3) development of a linearized phrase-structure model for detecting contextual semantic orientations in financial and economic news texts. The relevance of the newly added lexicon features and the benefit of using the proposed learning-algorithm are demonstrated in a comparative study against previously used general sentiment models as well as the popular word frequency models used in recent financial studies. The proposed framework is parsimonious and avoids the explosion in feature-space caused by the use of conventional n-gram features.
CORE: Measuring Multi-Agent LLM Interaction Quality under Game-Theoretic Pressures
Game-theoretic interactions between agents with Large Language Models (LLMs) have revealed many emergent capabilities, yet the linguistic diversity of these interactions has not been sufficiently quantified. In this paper, we present the Conversational Robustness Evaluation Score: CORE, a metric to quantify the effectiveness of language use within multi-agent systems across different game-theoretic interactions. CORE integrates measures of cluster entropy, lexical repetition, and semantic similarity, providing a direct lens of dialog quality. We apply CORE to pairwise LLM dialogs across competitive, cooperative, and neutral settings, further grounding our analysis in Zipf's and Heaps' Laws to characterize word frequency distributions and vocabulary growth. Our findings show that cooperative settings exhibit both steeper Zipf distributions and higher Heap exponents, indicating more repetition alongside greater vocabulary expansion. In contrast, competitive interactions display lower Zipf and Heaps exponents, reflecting less repetition and more constrained vocabularies. These results provide new insights into how social incentives influence language adaptation, and highlight CORE as a robust diagnostic for measuring linguistic robustness in multi-agent LLM systems. Our code is available at https://github.com/psyonp/core.
The language of prompting: What linguistic properties make a prompt successful?
The latest generation of LLMs can be prompted to achieve impressive zero-shot or few-shot performance in many NLP tasks. However, since performance is highly sensitive to the choice of prompts, considerable effort has been devoted to crowd-sourcing prompts or designing methods for prompt optimisation. Yet, we still lack a systematic understanding of how linguistic properties of prompts correlate with task performance. In this work, we investigate how LLMs of different sizes, pre-trained and instruction-tuned, perform on prompts that are semantically equivalent, but vary in linguistic structure. We investigate both grammatical properties such as mood, tense, aspect and modality, as well as lexico-semantic variation through the use of synonyms. Our findings contradict the common assumption that LLMs achieve optimal performance on lower perplexity prompts that reflect language use in pretraining or instruction-tuning data. Prompts transfer poorly between datasets or models, and performance cannot generally be explained by perplexity, word frequency, ambiguity or prompt length. Based on our results, we put forward a proposal for a more robust and comprehensive evaluation standard for prompting research.
Unsupervised Parsing by Searching for Frequent Word Sequences among Sentences with Equivalent Predicate-Argument Structures
Unsupervised constituency parsing focuses on identifying word sequences that form a syntactic unit (i.e., constituents) in target sentences. Linguists identify the constituent by evaluating a set of Predicate-Argument Structure (PAS) equivalent sentences where we find the constituent appears more frequently than non-constituents (i.e., the constituent corresponds to a frequent word sequence within the sentence set). However, such frequency information is unavailable in previous parsing methods that identify the constituent by observing sentences with diverse PAS. In this study, we empirically show that constituents correspond to frequent word sequences in the PAS-equivalent sentence set. We propose a frequency-based parser span-overlap that (1) computes the span-overlap score as the word sequence's frequency in the PAS-equivalent sentence set and (2) identifies the constituent structure by finding a constituent tree with the maximum span-overlap score. The parser achieves state-of-the-art level parsing accuracy, outperforming existing unsupervised parsers in eight out of ten languages. Additionally, we discover a multilingual phenomenon: participant-denoting constituents tend to have higher span-overlap scores than equal-length event-denoting constituents, meaning that the former tend to appear more frequently in the PAS-equivalent sentence set than the latter. The phenomenon indicates a statistical difference between the two constituent types, laying the foundation for future labeled unsupervised parsing research.
Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy
Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour.
Does Visual Grounding Enhance the Understanding of Embodied Knowledge in Large Language Models?
Despite significant progress in multimodal language models (LMs), it remains unclear whether visual grounding enhances their understanding of embodied knowledge compared to text-only models. To address this question, we propose a novel embodied knowledge understanding benchmark based on the perceptual theory from psychology, encompassing visual, auditory, tactile, gustatory, olfactory external senses, and interoception. The benchmark assesses the models' perceptual abilities across different sensory modalities through vector comparison and question-answering tasks with over 1,700 questions. By comparing 30 state-of-the-art LMs, we surprisingly find that vision-language models (VLMs) do not outperform text-only models in either task. Moreover, the models perform significantly worse in the visual dimension compared to other sensory dimensions. Further analysis reveals that the vector representations are easily influenced by word form and frequency, and the models struggle to answer questions involving spatial perception and reasoning. Our findings underscore the need for more effective integration of embodied knowledge in LMs to enhance their understanding of the physical world.
The Impact of Token Granularity on the Predictive Power of Language Model Surprisal
Word-by-word language model surprisal is often used to model the incremental processing of human readers, which raises questions about how various choices in language modeling influence its predictive power. One factor that has been overlooked in cognitive modeling is the granularity of subword tokens, which explicitly encodes information about word length and frequency, and ultimately influences the quality of vector representations that are learned. This paper presents experiments that manipulate the token granularity and evaluate its impact on the ability of surprisal to account for processing difficulty of naturalistic text and garden-path constructions. Experiments with naturalistic reading times reveal a substantial influence of token granularity on surprisal, with tokens defined by a vocabulary size of 8,000 resulting in surprisal that is most predictive. In contrast, on garden-path constructions, language models trained on coarser-grained tokens generally assigned higher surprisal to critical regions, suggesting their increased sensitivity to syntax. Taken together, these results suggest a large role of token granularity on the quality of language model surprisal for cognitive modeling.
Is Automated Topic Model Evaluation Broken?: The Incoherence of Coherence
Topic model evaluation, like evaluation of other unsupervised methods, can be contentious. However, the field has coalesced around automated estimates of topic coherence, which rely on the frequency of word co-occurrences in a reference corpus. Contemporary neural topic models surpass classical ones according to these metrics. At the same time, topic model evaluation suffers from a validation gap: automated coherence, developed for classical models, has not been validated using human experimentation for neural models. In addition, a meta-analysis of topic modeling literature reveals a substantial standardization gap in automated topic modeling benchmarks. To address the validation gap, we compare automated coherence with the two most widely accepted human judgment tasks: topic rating and word intrusion. To address the standardization gap, we systematically evaluate a dominant classical model and two state-of-the-art neural models on two commonly used datasets. Automated evaluations declare a winning model when corresponding human evaluations do not, calling into question the validity of fully automatic evaluations independent of human judgments.
Attentive Mimicking: Better Word Embeddings by Attending to Informative Contexts
Learning high-quality embeddings for rare words is a hard problem because of sparse context information. Mimicking (Pinter et al., 2017) has been proposed as a solution: given embeddings learned by a standard algorithm, a model is first trained to reproduce embeddings of frequent words from their surface form and then used to compute embeddings for rare words. In this paper, we introduce attentive mimicking: the mimicking model is given access not only to a word's surface form, but also to all available contexts and learns to attend to the most informative and reliable contexts for computing an embedding. In an evaluation on four tasks, we show that attentive mimicking outperforms previous work for both rare and medium-frequency words. Thus, compared to previous work, attentive mimicking improves embeddings for a much larger part of the vocabulary, including the medium-frequency range.
Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models
While Large Language Models (LLMs) become ever more dominant, classic pre-trained word embeddings sustain their relevance through computational efficiency and nuanced linguistic interpretation. Drawing from recent studies demonstrating that the convergence of GloVe and word2vec optimizations all tend towards log-co-occurrence matrix variants, we construct a novel word representation system called Bit-cipher that eliminates the need of backpropagation while leveraging contextual information and hyper-efficient dimensionality reduction techniques based on unigram frequency, providing strong interpretability, alongside efficiency. We use the bit-cipher algorithm to train word vectors via a two-step process that critically relies on a hyperparameter -- bits -- that controls the vector dimension. While the first step trains the bit-cipher, the second utilizes it under two different aggregation modes -- summation or concatenation -- to produce contextually rich representations from word co-occurrences. We extend our investigation into bit-cipher's efficacy, performing probing experiments on part-of-speech (POS) tagging and named entity recognition (NER) to assess its competitiveness with classic embeddings like word2vec and GloVe. Additionally, we explore its applicability in LM training and fine-tuning. By replacing embedding layers with cipher embeddings, our experiments illustrate the notable efficiency of cipher in accelerating the training process and attaining better optima compared to conventional training paradigms. Experiments on the integration of bit-cipher embedding layers with Roberta, T5, and OPT, prior to or as a substitute for fine-tuning, showcase a promising enhancement to transfer learning, allowing rapid model convergence while preserving competitive performance.
BERTRAM: Improved Word Embeddings Have Big Impact on Contextualized Model Performance
Pretraining deep language models has led to large performance gains in NLP. Despite this success, Schick and Sch\"utze (2020) recently showed that these models struggle to understand rare words. For static word embeddings, this problem has been addressed by separately learning representations for rare words. In this work, we transfer this idea to pretrained language models: We introduce BERTRAM, a powerful architecture based on BERT that is capable of inferring high-quality embeddings for rare words that are suitable as input representations for deep language models. This is achieved by enabling the surface form and contexts of a word to interact with each other in a deep architecture. Integrating BERTRAM into BERT leads to large performance increases due to improved representations of rare and medium frequency words on both a rare word probing task and three downstream tasks.
Solving Challenging Math Word Problems Using GPT-4 Code Interpreter with Code-based Self-Verification
Recent progress in large language models (LLMs) like GPT-4 and PaLM-2 has brought significant advancements in addressing math reasoning problems. In particular, OpenAI's latest version of GPT-4, known as GPT-4 Code Interpreter, shows remarkable performance on challenging math datasets. In this paper, we explore the effect of code on enhancing LLMs' reasoning capability by introducing different constraints on the Code Usage Frequency of GPT-4 Code Interpreter. We found that its success can be largely attributed to its powerful skills in generating and executing code, evaluating the output of code execution, and rectifying its solution when receiving unreasonable outputs. Based on this insight, we propose a novel and effective prompting method, explicit code-based self-verification~(CSV), to further boost the mathematical reasoning potential of GPT-4 Code Interpreter. This method employs a zero-shot prompt on GPT-4 Code Interpreter to encourage it to use code to self-verify its answers. In instances where the verification state registers as ``False'', the model shall automatically amend its solution, analogous to our approach of rectifying errors during a mathematics examination. Furthermore, we recognize that the states of the verification result indicate the confidence of a solution, which can improve the effectiveness of majority voting. With GPT-4 Code Interpreter and CSV, we achieve an impressive zero-shot accuracy on MATH dataset (53.9\% to 84.3\%).
FRCRN: Boosting Feature Representation using Frequency Recurrence for Monaural Speech Enhancement
Convolutional recurrent networks (CRN) integrating a convolutional encoder-decoder (CED) structure and a recurrent structure have achieved promising performance for monaural speech enhancement. However, feature representation across frequency context is highly constrained due to limited receptive fields in the convolutions of CED. In this paper, we propose a convolutional recurrent encoder-decoder (CRED) structure to boost feature representation along the frequency axis. The CRED applies frequency recurrence on 3D convolutional feature maps along the frequency axis following each convolution, therefore, it is capable of catching long-range frequency correlations and enhancing feature representations of speech inputs. The proposed frequency recurrence is realized efficiently using a feedforward sequential memory network (FSMN). Besides the CRED, we insert two stacked FSMN layers between the encoder and the decoder to model further temporal dynamics. We name the proposed framework as Frequency Recurrent CRN (FRCRN). We design FRCRN to predict complex Ideal Ratio Mask (cIRM) in complex-valued domain and optimize FRCRN using both time-frequency-domain and time-domain losses. Our proposed approach achieved state-of-the-art performance on wideband benchmark datasets and achieved 2nd place for the real-time fullband track in terms of Mean Opinion Score (MOS) and Word Accuracy (WAcc) in the ICASSP 2022 Deep Noise Suppression (DNS) challenge (https://github.com/alibabasglab/FRCRN).
Cross-level Requirement Traceability: A Novel Approach Integrating Bag-of-Words and Word Embedding for Enhanced Similarity Functionality
Requirement traceability is the process of identifying the inter-dependencies between requirements. It poses a significant challenge when conducted manually, especially when dealing with requirements at various levels of abstraction. In this work, we propose a novel approach to automate the task of linking high-level business requirements with more technical system requirements. The proposed approach begins by representing each requirement using a Bag of-Words (BOW) model combined with the Term Frequency-Inverse Document Frequency (TF-IDF) scoring function. Then, we suggested an enhanced cosine similarity that uses recent advances in word embedding representation to correct traditional cosine similarity function limitations. To evaluate the effectiveness of our approach, we conducted experiments on three well-known datasets: COEST, WARC(NFR), and WARC(FRS). The results demonstrate that our approach significantly improves efficiency compared to existing methods. We achieved better results with an increase of approximately 18.4% in one of the datasets, as measured by the F2 score.
How Effective is Byte Pair Encoding for Out-Of-Vocabulary Words in Neural Machine Translation?
Neural Machine Translation (NMT) is an open vocabulary problem. As a result, dealing with the words not occurring during training (a.k.a. out-of-vocabulary (OOV) words) have long been a fundamental challenge for NMT systems. The predominant method to tackle this problem is Byte Pair Encoding (BPE) which splits words, including OOV words, into sub-word segments. BPE has achieved impressive results for a wide range of translation tasks in terms of automatic evaluation metrics. While it is often assumed that by using BPE, NMT systems are capable of handling OOV words, the effectiveness of BPE in translating OOV words has not been explicitly measured. In this paper, we study to what extent BPE is successful in translating OOV words at the word-level. We analyze the translation quality of OOV words based on word type, number of segments, cross-attention weights, and the frequency of segment n-grams in the training data. Our experiments show that while careful BPE settings seem to be fairly useful in translating OOV words across datasets, a considerable percentage of OOV words are translated incorrectly. Furthermore, we highlight the slightly higher effectiveness of BPE in translating OOV words for special cases, such as named-entities and when the languages involved are linguistically close to each other.
Diet Code Is Healthy: Simplifying Programs for Pre-trained Models of Code
Pre-trained code representation models such as CodeBERT have demonstrated superior performance in a variety of software engineering tasks, yet they are often heavy in complexity, quadratically with the length of the input sequence. Our empirical analysis of CodeBERT's attention reveals that CodeBERT pays more attention to certain types of tokens and statements such as keywords and data-relevant statements. Based on these findings, we propose DietCode, which aims at lightweight leverage of large pre-trained models for source code. DietCode simplifies the input program of CodeBERT with three strategies, namely, word dropout, frequency filtering, and an attention-based strategy which selects statements and tokens that receive the most attention weights during pre-training. Hence, it gives a substantial reduction in the computational cost without hampering the model performance. Experimental results on two downstream tasks show that DietCodeBERT provides comparable results to CodeBERT with 40% less computational cost in fine-tuning and testing.
Impact of Pretraining Word Co-occurrence on Compositional Generalization in Multimodal Models
CLIP and large multimodal models (LMMs) have better accuracy on examples involving concepts that are highly represented in the training data. However, the role of concept combinations in the training data on compositional generalization is largely unclear -- for instance, how does accuracy vary when a common object appears in an uncommon pairing with another object? In this paper, we investigate how word co-occurrence statistics in the pretraining dataset (a proxy for co-occurrence of visual concepts) impacts CLIP/LMM performance. To disentangle the effects of word co-occurrence frequencies from single-word frequencies, we measure co-occurrence with pointwise mutual information (PMI), which normalizes the joint probability of two words co-occurring by the probability of co-occurring independently. Using synthetically generated images with a variety of concept pairs, we show a strong correlation between PMI in the CLIP pretraining data and zero-shot accuracy in CLIP models trained on LAION-400M (r=0.97 and 14% accuracy gap between images in the top and bottom 5% of PMI values), demonstrating that even accuracy on common concepts is affected by the combination of concepts in the image. Leveraging this finding, we reproduce this effect in natural images by editing them to contain pairs with varying PMI, resulting in a correlation of r=0.75. Finally, we demonstrate that this behavior in CLIP transfers to LMMs built on top of CLIP (r=0.70 for TextVQA, r=0.62 for VQAv2). Our findings highlight the need for algorithms and architectures that improve compositional generalization in multimodal models without scaling the training data combinatorially. Our code is available at https://github.com/helenqu/multimodal-pretraining-pmi.
Derivational Morphology Reveals Analogical Generalization in Large Language Models
What mechanisms underlie linguistic generalization in large language models (LLMs)? This question has attracted considerable attention, with most studies analyzing the extent to which the language skills of LLMs resemble rules. As of yet, it is not known whether linguistic generalization in LLMs could equally well be explained as the result of analogical processes, which can be formalized as similarity operations on stored exemplars. A key shortcoming of prior research is its focus on linguistic phenomena with a high degree of regularity, for which rule-based and analogical approaches make the same predictions. Here, we instead examine derivational morphology, specifically English adjective nominalization, which displays notable variability. We introduce a new method for investigating linguistic generalization in LLMs: focusing on GPT-J, we fit cognitive models that instantiate rule-based and analogical learning to the LLM training data and compare their predictions on a set of nonce adjectives with those of the LLM, allowing us to draw direct conclusions regarding underlying mechanisms. As expected, rule-based and analogical models explain the predictions of GPT-J equally well for adjectives with regular nominalization patterns. However, for adjectives with variable nominalization patterns, the analogical model provides a much better match. Furthermore, GPT-J's behavior is sensitive to the individual word frequencies, even for regular forms, a behavior that is consistent with an analogical account of regular forms but not a rule-based one. These findings refute the hypothesis that GPT-J's linguistic generalization on adjective nominalization involves rules, suggesting similarity operations on stored exemplars as the underlying mechanism. Overall, our study suggests that analogical processes play a bigger role in the linguistic generalization of LLMs than previously thought.
