Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSD-GS: Structured Deformable 3D Gaussians for Efficient Dynamic Scene Reconstruction
Current 4D Gaussian frameworks for dynamic scene reconstruction deliver impressive visual fidelity and rendering speed, however, the inherent trade-off between storage costs and the ability to characterize complex physical motions significantly limits the practical application of these methods. To tackle these problems, we propose SD-GS, a compact and efficient dynamic Gaussian splatting framework for complex dynamic scene reconstruction, featuring two key contributions. First, we introduce a deformable anchor grid, a hierarchical and memory-efficient scene representation where each anchor point derives multiple 3D Gaussians in its local spatiotemporal region and serves as the geometric backbone of the 3D scene. Second, to enhance modeling capability for complex motions, we present a deformation-aware densification strategy that adaptively grows anchors in under-reconstructed high-dynamic regions while reducing redundancy in static areas, achieving superior visual quality with fewer anchors. Experimental results demonstrate that, compared to state-of-the-art methods, SD-GS achieves an average of 60\% reduction in model size and an average of 100\% improvement in FPS, significantly enhancing computational efficiency while maintaining or even surpassing visual quality.
Efficient Gaussian Splatting for Monocular Dynamic Scene Rendering via Sparse Time-Variant Attribute Modeling
Rendering dynamic scenes from monocular videos is a crucial yet challenging task. The recent deformable Gaussian Splatting has emerged as a robust solution to represent real-world dynamic scenes. However, it often leads to heavily redundant Gaussians, attempting to fit every training view at various time steps, leading to slower rendering speeds. Additionally, the attributes of Gaussians in static areas are time-invariant, making it unnecessary to model every Gaussian, which can cause jittering in static regions. In practice, the primary bottleneck in rendering speed for dynamic scenes is the number of Gaussians. In response, we introduce Efficient Dynamic Gaussian Splatting (EDGS), which represents dynamic scenes via sparse time-variant attribute modeling. Our approach formulates dynamic scenes using a sparse anchor-grid representation, with the motion flow of dense Gaussians calculated via a classical kernel representation. Furthermore, we propose an unsupervised strategy to efficiently filter out anchors corresponding to static areas. Only anchors associated with deformable objects are input into MLPs to query time-variant attributes. Experiments on two real-world datasets demonstrate that our EDGS significantly improves the rendering speed with superior rendering quality compared to previous state-of-the-art methods.
TED-4DGS: Temporally Activated and Embedding-based Deformation for 4DGS Compression
Building on the success of 3D Gaussian Splatting (3DGS) in static 3D scene representation, its extension to dynamic scenes, commonly referred to as 4DGS or dynamic 3DGS, has attracted increasing attention. However, designing more compact and efficient deformation schemes together with rate-distortion-optimized compression strategies for dynamic 3DGS representations remains an underexplored area. Prior methods either rely on space-time 4DGS with overspecified, short-lived Gaussian primitives or on canonical 3DGS with deformation that lacks explicit temporal control. To address this, we present TED-4DGS, a temporally activated and embedding-based deformation scheme for rate-distortion-optimized 4DGS compression that unifies the strengths of both families. TED-4DGS is built on a sparse anchor-based 3DGS representation. Each canonical anchor is assigned learnable temporal-activation parameters to specify its appearance and disappearance transitions over time, while a lightweight per-anchor temporal embedding queries a shared deformation bank to produce anchor-specific deformation. For rate-distortion compression, we incorporate an implicit neural representation (INR)-based hyperprior to model anchor attribute distributions, along with a channel-wise autoregressive model to capture intra-anchor correlations. With these novel elements, our scheme achieves state-of-the-art rate-distortion performance on several real-world datasets. To the best of our knowledge, this work represents one of the first attempts to pursue a rate-distortion-optimized compression framework for dynamic 3DGS representations.
Dynamic Gaussians Mesh: Consistent Mesh Reconstruction from Dynamic Scenes
Modern 3D engines and graphics pipelines require mesh as a memory-efficient representation, which allows efficient rendering, geometry processing, texture editing, and many other downstream operations. However, it is still highly difficult to obtain high-quality mesh in terms of detailed structure and time consistency from dynamic observations. To this end, we introduce Dynamic Gaussians Mesh (DG-Mesh), a framework to reconstruct a high-fidelity and time-consistent mesh from dynamic input. Our work leverages the recent advancement in 3D Gaussian Splatting to construct the mesh sequence with temporal consistency from dynamic observations. Building on top of this representation, DG-Mesh recovers high-quality meshes from the Gaussian points and can track the mesh vertices over time, which enables applications such as texture editing on dynamic objects. We introduce the Gaussian-Mesh Anchoring, which encourages evenly distributed Gaussians, resulting better mesh reconstruction through mesh-guided densification and pruning on the deformed Gaussians. By applying cycle-consistent deformation between the canonical and the deformed space, we can project the anchored Gaussian back to the canonical space and optimize Gaussians across all time frames. During the evaluation on different datasets, DG-Mesh provides significantly better mesh reconstruction and rendering than baselines. Project page: https://www.liuisabella.com/DG-Mesh
MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval Adjustment for Compact Dynamic 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
SOGS: Second-Order Anchor for Advanced 3D Gaussian Splatting
Anchor-based 3D Gaussian splatting (3D-GS) exploits anchor features in 3D Gaussian prediction, which has achieved impressive 3D rendering quality with reduced Gaussian redundancy. On the other hand, it often encounters the dilemma among anchor features, model size, and rendering quality - large anchor features lead to large 3D models and high-quality rendering whereas reducing anchor features degrades Gaussian attribute prediction which leads to clear artifacts in the rendered textures and geometries. We design SOGS, an anchor-based 3D-GS technique that introduces second-order anchors to achieve superior rendering quality and reduced anchor features and model size simultaneously. Specifically, SOGS incorporates covariance-based second-order statistics and correlation across feature dimensions to augment features within each anchor, compensating for the reduced feature size and improving rendering quality effectively. In addition, it introduces a selective gradient loss to enhance the optimization of scene textures and scene geometries, leading to high-quality rendering with small anchor features. Extensive experiments over multiple widely adopted benchmarks show that SOGS achieves superior rendering quality in novel view synthesis with clearly reduced model size.
Model Merging with Functional Dual Anchors
Model merging is an efficient post-training strategy for integrating knowledge from multiple finetuned checkpoints of a shared foundation model. Existing methods operate in the parameter space, combining task vectors to mitigate conflicts, but remain constrained by parameter inconsistencies. We propose Functional Dual Anchors (FDAs), a framework that instead models the input-representation space. FDAs are synthetic inputs whose induced gradients align with task vectors, capturing task-specific functional shifts relative to the pretrained model. This perspective bridges joint multi-task training and post-hoc merging, offering both robustness and flexibility. We further introduce a principled initialization scheme and show that FDAs are complementary to parameter-space model merging. Comprehensive experiments demonstrate the effectiveness of FDAs in model merging.
Ghost on the Shell: An Expressive Representation of General 3D Shapes
The creation of photorealistic virtual worlds requires the accurate modeling of 3D surface geometry for a wide range of objects. For this, meshes are appealing since they 1) enable fast physics-based rendering with realistic material and lighting, 2) support physical simulation, and 3) are memory-efficient for modern graphics pipelines. Recent work on reconstructing and statistically modeling 3D shape, however, has critiqued meshes as being topologically inflexible. To capture a wide range of object shapes, any 3D representation must be able to model solid, watertight, shapes as well as thin, open, surfaces. Recent work has focused on the former, and methods for reconstructing open surfaces do not support fast reconstruction with material and lighting or unconditional generative modelling. Inspired by the observation that open surfaces can be seen as islands floating on watertight surfaces, we parameterize open surfaces by defining a manifold signed distance field on watertight templates. With this parameterization, we further develop a grid-based and differentiable representation that parameterizes both watertight and non-watertight meshes of arbitrary topology. Our new representation, called Ghost-on-the-Shell (G-Shell), enables two important applications: differentiable rasterization-based reconstruction from multiview images and generative modelling of non-watertight meshes. We empirically demonstrate that G-Shell achieves state-of-the-art performance on non-watertight mesh reconstruction and generation tasks, while also performing effectively for watertight meshes.
AnchorSync: Global Consistency Optimization for Long Video Editing
Editing long videos remains a challenging task due to the need for maintaining both global consistency and temporal coherence across thousands of frames. Existing methods often suffer from structural drift or temporal artifacts, particularly in minute-long sequences. We introduce AnchorSync, a novel diffusion-based framework that enables high-quality, long-term video editing by decoupling the task into sparse anchor frame editing and smooth intermediate frame interpolation. Our approach enforces structural consistency through a progressive denoising process and preserves temporal dynamics via multimodal guidance. Extensive experiments show that AnchorSync produces coherent, high-fidelity edits, surpassing prior methods in visual quality and temporal stability.
Differentiable Discrete Elastic Rods for Real-Time Modeling of Deformable Linear Objects
This paper addresses the task of modeling Deformable Linear Objects (DLOs), such as ropes and cables, during dynamic motion over long time horizons. This task presents significant challenges due to the complex dynamics of DLOs. To address these challenges, this paper proposes differentiable Discrete Elastic Rods For deformable linear Objects with Real-time Modeling (DEFORM), a novel framework that combines a differentiable physics-based model with a learning framework to model DLOs accurately and in real-time. The performance of DEFORM is evaluated in an experimental setup involving two industrial robots and a variety of sensors. A comprehensive series of experiments demonstrate the efficacy of DEFORM in terms of accuracy, computational speed, and generalizability when compared to state-of-the-art alternatives. To further demonstrate the utility of DEFORM, this paper integrates it into a perception pipeline and illustrates its superior performance when compared to the state-of-the-art methods while tracking a DLO even in the presence of occlusions. Finally, this paper illustrates the superior performance of DEFORM when compared to state-of-the-art methods when it is applied to perform autonomous planning and control of DLOs. Project page: https://roahmlab.github.io/DEFORM/.
3D Face Reconstruction with the Geometric Guidance of Facial Part Segmentation
3D Morphable Models (3DMMs) provide promising 3D face reconstructions in various applications. However, existing methods struggle to reconstruct faces with extreme expressions due to deficiencies in supervisory signals, such as sparse or inaccurate landmarks. Segmentation information contains effective geometric contexts for face reconstruction. Certain attempts intuitively depend on differentiable renderers to compare the rendered silhouettes of reconstruction with segmentation, which is prone to issues like local optima and gradient instability. In this paper, we fully utilize the facial part segmentation geometry by introducing Part Re-projection Distance Loss (PRDL). Specifically, PRDL transforms facial part segmentation into 2D points and re-projects the reconstruction onto the image plane. Subsequently, by introducing grid anchors and computing different statistical distances from these anchors to the point sets, PRDL establishes geometry descriptors to optimize the distribution of the point sets for face reconstruction. PRDL exhibits a clear gradient compared to the renderer-based methods and presents state-of-the-art reconstruction performance in extensive quantitative and qualitative experiments. Our project is available at https://github.com/wang-zidu/3DDFA-V3 .
MoRel: Long-Range Flicker-Free 4D Motion Modeling via Anchor Relay-based Bidirectional Blending with Hierarchical Densification
Recent advances in 4D Gaussian Splatting (4DGS) have extended the high-speed rendering capability of 3D Gaussian Splatting (3DGS) into the temporal domain, enabling real-time rendering of dynamic scenes. However, one of the major remaining challenges lies in modeling long-range motion-contained dynamic videos, where a naive extension of existing methods leads to severe memory explosion, temporal flickering, and failure to handle appearing or disappearing occlusions over time. To address these challenges, we propose a novel 4DGS framework characterized by an Anchor Relay-based Bidirectional Blending (ARBB) mechanism, named MoRel, which enables temporally consistent and memory-efficient modeling of long-range dynamic scenes. Our method progressively constructs locally canonical anchor spaces at key-frame time index and models inter-frame deformations at the anchor level, enhancing temporal coherence. By learning bidirectional deformations between KfA and adaptively blending them through learnable opacity control, our approach mitigates temporal discontinuities and flickering artifacts. We further introduce a Feature-variance-guided Hierarchical Densification (FHD) scheme that effectively densifies KfA's while keeping rendering quality, based on an assigned level of feature-variance. To effectively evaluate our model's capability to handle real-world long-range 4D motion, we newly compose long-range 4D motion-contained dataset, called SelfCap_{LR}. It has larger average dynamic motion magnitude, captured at spatially wider spaces, compared to previous dynamic video datasets. Overall, our MoRel achieves temporally coherent and flicker-free long-range 4D reconstruction while maintaining bounded memory usage, demonstrating both scalability and efficiency in dynamic Gaussian-based representations.
Learning Foresightful Dense Visual Affordance for Deformable Object Manipulation
Understanding and manipulating deformable objects (e.g., ropes and fabrics) is an essential yet challenging task with broad applications. Difficulties come from complex states and dynamics, diverse configurations and high-dimensional action space of deformable objects. Besides, the manipulation tasks usually require multiple steps to accomplish, and greedy policies may easily lead to local optimal states. Existing studies usually tackle this problem using reinforcement learning or imitating expert demonstrations, with limitations in modeling complex states or requiring hand-crafted expert policies. In this paper, we study deformable object manipulation using dense visual affordance, with generalization towards diverse states, and propose a novel kind of foresightful dense affordance, which avoids local optima by estimating states' values for long-term manipulation. We propose a framework for learning this representation, with novel designs such as multi-stage stable learning and efficient self-supervised data collection without experts. Experiments demonstrate the superiority of our proposed foresightful dense affordance. Project page: https://hyperplane-lab.github.io/DeformableAffordance
Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
Robotic Fabric Flattening with Wrinkle Direction Detection
Deformable Object Manipulation (DOM) is an important field of research as it contributes to practical tasks such as automatic cloth handling, cable routing, surgical operation, etc. Perception is considered one of the major challenges in DOM due to the complex dynamics and high degree of freedom of deformable objects. In this paper, we develop a novel image-processing algorithm based on Gabor filters to extract useful features from cloth, and based on this, devise a strategy for cloth flattening tasks. We also evaluate the overall framework experimentally and compare it with three human operators. The results show that our algorithm can determine the direction of wrinkles on the cloth accurately in simulation as well as in real robot experiments. Furthermore, our dewrinkling strategy compares favorably to baseline methods. The experiment video is available on https://sites.google.com/view/robotic-fabric-flattening/home
MoAngelo: Motion-Aware Neural Surface Reconstruction for Dynamic Scenes
Dynamic scene reconstruction from multi-view videos remains a fundamental challenge in computer vision. While recent neural surface reconstruction methods have achieved remarkable results in static 3D reconstruction, extending these approaches with comparable quality for dynamic scenes introduces significant computational and representational challenges. Existing dynamic methods focus on novel-view synthesis, therefore, their extracted meshes tend to be noisy. Even approaches aiming for geometric fidelity often result in too smooth meshes due to the ill-posedness of the problem. We present a novel framework for highly detailed dynamic reconstruction that extends the static 3D reconstruction method NeuralAngelo to work in dynamic settings. To that end, we start with a high-quality template scene reconstruction from the initial frame using NeuralAngelo, and then jointly optimize deformation fields that track the template and refine it based on the temporal sequence. This flexible template allows updating the geometry to include changes that cannot be modeled with the deformation field, for instance occluded parts or the changes in the topology. We show superior reconstruction accuracy in comparison to previous state-of-the-art methods on the ActorsHQ dataset.
Diverse Human Motion Prediction Guided by Multi-Level Spatial-Temporal Anchors
Predicting diverse human motions given a sequence of historical poses has received increasing attention. Despite rapid progress, existing work captures the multi-modal nature of human motions primarily through likelihood-based sampling, where the mode collapse has been widely observed. In this paper, we propose a simple yet effective approach that disentangles randomly sampled codes with a deterministic learnable component named anchors to promote sample precision and diversity. Anchors are further factorized into spatial anchors and temporal anchors, which provide attractively interpretable control over spatial-temporal disparity. In principle, our spatial-temporal anchor-based sampling (STARS) can be applied to different motion predictors. Here we propose an interaction-enhanced spatial-temporal graph convolutional network (IE-STGCN) that encodes prior knowledge of human motions (e.g., spatial locality), and incorporate the anchors into it. Extensive experiments demonstrate that our approach outperforms state of the art in both stochastic and deterministic prediction, suggesting it as a unified framework for modeling human motions. Our code and pretrained models are available at https://github.com/Sirui-Xu/STARS.
Efficient Encoding of Graphics Primitives with Simplex-based Structures
Grid-based structures are commonly used to encode explicit features for graphics primitives such as images, signed distance functions (SDF), and neural radiance fields (NeRF) due to their simple implementation. However, in n-dimensional space, calculating the value of a sampled point requires interpolating the values of its 2^n neighboring vertices. The exponential scaling with dimension leads to significant computational overheads. To address this issue, we propose a simplex-based approach for encoding graphics primitives. The number of vertices in a simplex-based structure increases linearly with dimension, making it a more efficient and generalizable alternative to grid-based representations. Using the non-axis-aligned simplicial structure property, we derive and prove a coordinate transformation, simplicial subdivision, and barycentric interpolation scheme for efficient sampling, which resembles transformation procedures in the simplex noise algorithm. Finally, we use hash tables to store multiresolution features of all interest points in the simplicial grid, which are passed into a tiny fully connected neural network to parameterize graphics primitives. We implemented a detailed simplex-based structure encoding algorithm in C++ and CUDA using the methods outlined in our approach. In the 2D image fitting task, the proposed method is capable of fitting a giga-pixel image with 9.4% less time compared to the baseline method proposed by instant-ngp, while maintaining the same quality and compression rate. In the volumetric rendering setup, we observe a maximum 41.2% speedup when the samples are dense enough.
GS-Verse: Mesh-based Gaussian Splatting for Physics-aware Interaction in Virtual Reality
As the demand for immersive 3D content grows, the need for intuitive and efficient interaction methods becomes paramount. Current techniques for physically manipulating 3D content within Virtual Reality (VR) often face significant limitations, including reliance on engineering-intensive processes and simplified geometric representations, such as tetrahedral cages, which can compromise visual fidelity and physical accuracy. In this paper, we introduce GS-Verse (Gaussian Splatting for Virtual Environment Rendering and Scene Editing), a novel method designed to overcome these challenges by directly integrating an object's mesh with a Gaussian Splatting (GS) representation. Our approach enables more precise surface approximation, leading to highly realistic deformations and interactions. By leveraging existing 3D mesh assets, GS-Verse facilitates seamless content reuse and simplifies the development workflow. Moreover, our system is designed to be physics-engine-agnostic, granting developers robust deployment flexibility. This versatile architecture delivers a highly realistic, adaptable, and intuitive approach to interactive 3D manipulation. We rigorously validate our method against the current state-of-the-art technique that couples VR with GS in a comparative user study involving 18 participants. Specifically, we demonstrate that our approach is statistically significantly better for physics-aware stretching manipulation and is also more consistent in other physics-based manipulations like twisting and shaking. Further evaluation across various interactions and scenes confirms that our method consistently delivers high and reliable performance, showing its potential as a plausible alternative to existing methods.
SAMP: Spatial Anchor-based Motion Policy for Collision-Aware Robotic Manipulators
Neural-based motion planning methods have achieved remarkable progress for robotic manipulators, yet a fundamental challenge lies in simultaneously accounting for both the robot's physical shape and the surrounding environment when generating safe and feasible motions. Moreover, existing approaches often rely on simplified robot models or focus primarily on obstacle representation, which can lead to incomplete collision detection and degraded performance in cluttered scenes. To address these limitations, we propose spatial anchor-based motion policy (SAMP), a unified framework that simultaneously encodes the environment and the manipulator using signed distance field (SDF) anchored on a shared spatial grid. SAMP incorporates a dedicated robot SDF network that captures the manipulator's precise geometry, enabling collision-aware reasoning beyond coarse link approximations. These representations are fused on spatial anchors and used to train a neural motion policy that generates smooth, collision-free trajectories in the proposed efficient feature alignment strategy. Experiments conducted in both simulated and real-world environments consistently show that SAMP outperforms existing methods, delivering an 11% increase in success rate and a 7% reduction in collision rate. These results highlight the benefits of jointly modelling robot and environment geometry, demonstrating its practical value in challenging real-world environments.
HAC++: Towards 100X Compression of 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To achieve a compact size, we propose HAC++, which leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over 100X compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than 20X size reduction compared to Scaffold-GS. Our code is available at https://github.com/YihangChen-ee/HAC-plus.
As-Plausible-As-Possible: Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors
We present As-Plausible-as-Possible (APAP) mesh deformation technique that leverages 2D diffusion priors to preserve the plausibility of a mesh under user-controlled deformation. Our framework uses per-face Jacobians to represent mesh deformations, where mesh vertex coordinates are computed via a differentiable Poisson Solve. The deformed mesh is rendered, and the resulting 2D image is used in the Score Distillation Sampling (SDS) process, which enables extracting meaningful plausibility priors from a pretrained 2D diffusion model. To better preserve the identity of the edited mesh, we fine-tune our 2D diffusion model with LoRA. Gradients extracted by SDS and a user-prescribed handle displacement are then backpropagated to the per-face Jacobians, and we use iterative gradient descent to compute the final deformation that balances between the user edit and the output plausibility. We evaluate our method with 2D and 3D meshes and demonstrate qualitative and quantitative improvements when using plausibility priors over geometry-preservation or distortion-minimization priors used by previous techniques. Our project page is at: https://as-plausible-aspossible.github.io/
Parallel Vertex Diffusion for Unified Visual Grounding
Unified visual grounding pursues a simple and generic technical route to leverage multi-task data with less task-specific design. The most advanced methods typically present boxes and masks as vertex sequences to model referring detection and segmentation as an autoregressive sequential vertex generation paradigm. However, generating high-dimensional vertex sequences sequentially is error-prone because the upstream of the sequence remains static and cannot be refined based on downstream vertex information, even if there is a significant location gap. Besides, with limited vertexes, the inferior fitting of objects with complex contours restricts the performance upper bound. To deal with this dilemma, we propose a parallel vertex generation paradigm for superior high-dimension scalability with a diffusion model by simply modifying the noise dimension. An intuitive materialization of our paradigm is Parallel Vertex Diffusion (PVD) to directly set vertex coordinates as the generation target and use a diffusion model to train and infer. We claim that it has two flaws: (1) unnormalized coordinate caused a high variance of loss value; (2) the original training objective of PVD only considers point consistency but ignores geometry consistency. To solve the first flaw, Center Anchor Mechanism (CAM) is designed to convert coordinates as normalized offset values to stabilize the training loss value. For the second flaw, Angle summation loss (ASL) is designed to constrain the geometry difference of prediction and ground truth vertexes for geometry-level consistency. Empirical results show that our PVD achieves state-of-the-art in both referring detection and segmentation, and our paradigm is more scalable and efficient than sequential vertex generation with high-dimension data.
DeFormer: Integrating Transformers with Deformable Models for 3D Shape Abstraction from a Single Image
Accurate 3D shape abstraction from a single 2D image is a long-standing problem in computer vision and graphics. By leveraging a set of primitives to represent the target shape, recent methods have achieved promising results. However, these methods either use a relatively large number of primitives or lack geometric flexibility due to the limited expressibility of the primitives. In this paper, we propose a novel bi-channel Transformer architecture, integrated with parameterized deformable models, termed DeFormer, to simultaneously estimate the global and local deformations of primitives. In this way, DeFormer can abstract complex object shapes while using a small number of primitives which offer a broader geometry coverage and finer details. Then, we introduce a force-driven dynamic fitting and a cycle-consistent re-projection loss to optimize the primitive parameters. Extensive experiments on ShapeNet across various settings show that DeFormer achieves better reconstruction accuracy over the state-of-the-art, and visualizes with consistent semantic correspondences for improved interpretability.
MCHex: Marching Cubes Based Adaptive Hexahedral Mesh Generation with Guaranteed Positive Jacobian
Constructing an adaptive hexahedral tessellation to fit an input triangle boundary is a key challenge in grid-based methods. The conventional method first removes outside elements (RO) and then projects the axis-aligned boundary onto the input triangle boundary, which has no guarantee on improving the initial Intersection over Union (IoU) and Hausdorff distance ratio (HR, w.r.t bounding box diagonal). The proposed MCHex approach replaces RO with a Marching Cubes method MCHex. Given the same computational budget (benchmarked using an identical precomputed Signed Distance Field, which dominates the runtime), MCHex provides better boundary approximation (higher IoU and lower HR) while guaranteeing a lower, yet still positive, minimum scaled Jacobian (>0 vs. RO's >0.48).
AnchorCrafter: Animate CyberAnchors Saling Your Products via Human-Object Interacting Video Generation
The automatic generation of anchor-style product promotion videos presents promising opportunities in online commerce, advertising, and consumer engagement. However, this remains a challenging task despite significant advancements in pose-guided human video generation. In addressing this challenge, we identify the integration of human-object interactions (HOI) into pose-guided human video generation as a core issue. To this end, we introduce AnchorCrafter, a novel diffusion-based system designed to generate 2D videos featuring a target human and a customized object, achieving high visual fidelity and controllable interactions. Specifically, we propose two key innovations: the HOI-appearance perception, which enhances object appearance recognition from arbitrary multi-view perspectives and disentangles object and human appearance, and the HOI-motion injection, which enables complex human-object interactions by overcoming challenges in object trajectory conditioning and inter-occlusion management. Additionally, we introduce the HOI-region reweighting loss, a training objective that enhances the learning of object details. Extensive experiments demonstrate that our proposed system outperforms existing methods in preserving object appearance and shape awareness, while simultaneously maintaining consistency in human appearance and motion. Project page: https://cangcz.github.io/Anchor-Crafter/
ASAG: Building Strong One-Decoder-Layer Sparse Detectors via Adaptive Sparse Anchor Generation
Recent sparse detectors with multiple, e.g. six, decoder layers achieve promising performance but much inference time due to complex heads. Previous works have explored using dense priors as initialization and built one-decoder-layer detectors. Although they gain remarkable acceleration, their performance still lags behind their six-decoder-layer counterparts by a large margin. In this work, we aim to bridge this performance gap while retaining fast speed. We find that the architecture discrepancy between dense and sparse detectors leads to feature conflict, hampering the performance of one-decoder-layer detectors. Thus we propose Adaptive Sparse Anchor Generator (ASAG) which predicts dynamic anchors on patches rather than grids in a sparse way so that it alleviates the feature conflict problem. For each image, ASAG dynamically selects which feature maps and which locations to predict, forming a fully adaptive way to generate image-specific anchors. Further, a simple and effective Query Weighting method eases the training instability from adaptiveness. Extensive experiments show that our method outperforms dense-initialized ones and achieves a better speed-accuracy trade-off. The code is available at https://github.com/iSEE-Laboratory/ASAG.
3D Gaussian Editing with A Single Image
The modeling and manipulation of 3D scenes captured from the real world are pivotal in various applications, attracting growing research interest. While previous works on editing have achieved interesting results through manipulating 3D meshes, they often require accurately reconstructed meshes to perform editing, which limits their application in 3D content generation. To address this gap, we introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting, enabling intuitive manipulation via directly editing the content on a 2D image plane. Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint of the original scene. To capture long-range object deformation, we introduce positional loss into the optimization process of 3D Gaussian Splatting and enable gradient propagation through reparameterization. To handle occluded 3D Gaussians when rendering from the specified viewpoint, we build an anchor-based structure and employ a coarse-to-fine optimization strategy capable of handling long-range deformation while maintaining structural stability. Furthermore, we design a novel masking strategy to adaptively identify non-rigid deformation regions for fine-scale modeling. Extensive experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation, demonstrating superior editing flexibility and quality compared to previous approaches.
Mesh-based Gaussian Splatting for Real-time Large-scale Deformation
Neural implicit representations, including Neural Distance Fields and Neural Radiance Fields, have demonstrated significant capabilities for reconstructing surfaces with complicated geometry and topology, and generating novel views of a scene. Nevertheless, it is challenging for users to directly deform or manipulate these implicit representations with large deformations in the real-time fashion. Gaussian Splatting(GS) has recently become a promising method with explicit geometry for representing static scenes and facilitating high-quality and real-time synthesis of novel views. However,it cannot be easily deformed due to the use of discrete Gaussians and lack of explicit topology. To address this, we develop a novel GS-based method that enables interactive deformation. Our key idea is to design an innovative mesh-based GS representation, which is integrated into Gaussian learning and manipulation. 3D Gaussians are defined over an explicit mesh, and they are bound with each other: the rendering of 3D Gaussians guides the mesh face split for adaptive refinement, and the mesh face split directs the splitting of 3D Gaussians. Moreover, the explicit mesh constraints help regularize the Gaussian distribution, suppressing poor-quality Gaussians(e.g. misaligned Gaussians,long-narrow shaped Gaussians), thus enhancing visual quality and avoiding artifacts during deformation. Based on this representation, we further introduce a large-scale Gaussian deformation technique to enable deformable GS, which alters the parameters of 3D Gaussians according to the manipulation of the associated mesh. Our method benefits from existing mesh deformation datasets for more realistic data-driven Gaussian deformation. Extensive experiments show that our approach achieves high-quality reconstruction and effective deformation, while maintaining the promising rendering results at a high frame rate(65 FPS on average).
Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering
Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representations and volumetric representations. However, it often leads to heavily redundant Gaussians that try to fit every training view, neglecting the underlying scene geometry. Consequently, the resulting model becomes less robust to significant view changes, texture-less area and lighting effects. We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians, and predicts their attributes on-the-fly based on viewing direction and distance within the view frustum. Anchor growing and pruning strategies are developed based on the importance of neural Gaussians to reliably improve the scene coverage. We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering. We also demonstrates an enhanced capability to accommodate scenes with varying levels-of-detail and view-dependent observations, without sacrificing the rendering speed.
Rigidity-Aware 3D Gaussian Deformation from a Single Image
Reconstructing object deformation from a single image remains a significant challenge in computer vision and graphics. Existing methods typically rely on multi-view video to recover deformation, limiting their applicability under constrained scenarios. To address this, we propose DeformSplat, a novel framework that effectively guides 3D Gaussian deformation from only a single image. Our method introduces two main technical contributions. First, we present Gaussian-to-Pixel Matching which bridges the domain gap between 3D Gaussian representations and 2D pixel observations. This enables robust deformation guidance from sparse visual cues. Second, we propose Rigid Part Segmentation consisting of initialization and refinement. This segmentation explicitly identifies rigid regions, crucial for maintaining geometric coherence during deformation. By combining these two techniques, our approach can reconstruct consistent deformations from a single image. Extensive experiments demonstrate that our approach significantly outperforms existing methods and naturally extends to various applications,such as frame interpolation and interactive object manipulation.
WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion
Generating long-range, geometrically consistent video presents a fundamental dilemma: while consistency demands strict adherence to 3D geometry in pixel space, state-of-the-art generative models operate most effectively in a camera-conditioned latent space. This disconnect causes current methods to struggle with occluded areas and complex camera trajectories. To bridge this gap, we propose WorldWarp, a framework that couples a 3D structural anchor with a 2D generative refiner. To establish geometric grounding, WorldWarp maintains an online 3D geometric cache built via Gaussian Splatting (3DGS). By explicitly warping historical content into novel views, this cache acts as a structural scaffold, ensuring each new frame respects prior geometry. However, static warping inevitably leaves holes and artifacts due to occlusions. We address this using a Spatio-Temporal Diffusion (ST-Diff) model designed for a "fill-and-revise" objective. Our key innovation is a spatio-temporal varying noise schedule: blank regions receive full noise to trigger generation, while warped regions receive partial noise to enable refinement. By dynamically updating the 3D cache at every step, WorldWarp maintains consistency across video chunks. Consequently, it achieves state-of-the-art fidelity by ensuring that 3D logic guides structure while diffusion logic perfects texture. Project page: https://hyokong.github.io/worldwarp-page/{https://hyokong.github.io/worldwarp-page/}.
ColorGS: High-fidelity Surgical Scene Reconstruction with Colored Gaussian Splatting
High-fidelity reconstruction of deformable tissues from endoscopic videos remains challenging due to the limitations of existing methods in capturing subtle color variations and modeling global deformations. While 3D Gaussian Splatting (3DGS) enables efficient dynamic reconstruction, its fixed per-Gaussian color assignment struggles with intricate textures, and linear deformation modeling fails to model consistent global deformation. To address these issues, we propose ColorGS, a novel framework that integrates spatially adaptive color encoding and enhanced deformation modeling for surgical scene reconstruction. First, we introduce Colored Gaussian Primitives, which employ dynamic anchors with learnable color parameters to adaptively encode spatially varying textures, significantly improving color expressiveness under complex lighting and tissue similarity. Second, we design an Enhanced Deformation Model (EDM) that combines time-aware Gaussian basis functions with learnable time-independent deformations, enabling precise capture of both localized tissue deformations and global motion consistency caused by surgical interactions. Extensive experiments on DaVinci robotic surgery videos and benchmark datasets (EndoNeRF, StereoMIS) demonstrate that ColorGS achieves state-of-the-art performance, attaining a PSNR of 39.85 (1.5 higher than prior 3DGS-based methods) and superior SSIM (97.25\%) while maintaining real-time rendering efficiency. Our work advances surgical scene reconstruction by balancing high fidelity with computational practicality, critical for intraoperative guidance and AR/VR applications.
GridFormer: Towards Accurate Table Structure Recognition via Grid Prediction
All tables can be represented as grids. Based on this observation, we propose GridFormer, a novel approach for interpreting unconstrained table structures by predicting the vertex and edge of a grid. First, we propose a flexible table representation in the form of an MXN grid. In this representation, the vertexes and edges of the grid store the localization and adjacency information of the table. Then, we introduce a DETR-style table structure recognizer to efficiently predict this multi-objective information of the grid in a single shot. Specifically, given a set of learned row and column queries, the recognizer directly outputs the vertexes and edges information of the corresponding rows and columns. Extensive experiments on five challenging benchmarks which include wired, wireless, multi-merge-cell, oriented, and distorted tables demonstrate the competitive performance of our model over other methods.
F^{2}-NeRF: Fast Neural Radiance Field Training with Free Camera Trajectories
This paper presents a novel grid-based NeRF called F2-NeRF (Fast-Free-NeRF) for novel view synthesis, which enables arbitrary input camera trajectories and only costs a few minutes for training. Existing fast grid-based NeRF training frameworks, like Instant-NGP, Plenoxels, DVGO, or TensoRF, are mainly designed for bounded scenes and rely on space warping to handle unbounded scenes. Existing two widely-used space-warping methods are only designed for the forward-facing trajectory or the 360-degree object-centric trajectory but cannot process arbitrary trajectories. In this paper, we delve deep into the mechanism of space warping to handle unbounded scenes. Based on our analysis, we further propose a novel space-warping method called perspective warping, which allows us to handle arbitrary trajectories in the grid-based NeRF framework. Extensive experiments demonstrate that F2-NeRF is able to use the same perspective warping to render high-quality images on two standard datasets and a new free trajectory dataset collected by us. Project page: https://totoro97.github.io/projects/f2-nerf.
TutteNet: Injective 3D Deformations by Composition of 2D Mesh Deformations
This work proposes a novel representation of injective deformations of 3D space, which overcomes existing limitations of injective methods: inaccuracy, lack of robustness, and incompatibility with general learning and optimization frameworks. The core idea is to reduce the problem to a deep composition of multiple 2D mesh-based piecewise-linear maps. Namely, we build differentiable layers that produce mesh deformations through Tutte's embedding (guaranteed to be injective in 2D), and compose these layers over different planes to create complex 3D injective deformations of the 3D volume. We show our method provides the ability to efficiently and accurately optimize and learn complex deformations, outperforming other injective approaches. As a main application, we produce complex and artifact-free NeRF and SDF deformations.
GridFormer: Point-Grid Transformer for Surface Reconstruction
Implicit neural networks have emerged as a crucial technology in 3D surface reconstruction. To reconstruct continuous surfaces from discrete point clouds, encoding the input points into regular grid features (plane or volume) has been commonly employed in existing approaches. However, these methods typically use the grid as an index for uniformly scattering point features. Compared with the irregular point features, the regular grid features may sacrifice some reconstruction details but improve efficiency. To take full advantage of these two types of features, we introduce a novel and high-efficiency attention mechanism between the grid and point features named Point-Grid Transformer (GridFormer). This mechanism treats the grid as a transfer point connecting the space and point cloud. Our method maximizes the spatial expressiveness of grid features and maintains computational efficiency. Furthermore, optimizing predictions over the entire space could potentially result in blurred boundaries. To address this issue, we further propose a boundary optimization strategy incorporating margin binary cross-entropy loss and boundary sampling. This approach enables us to achieve a more precise representation of the object structure. Our experiments validate that our method is effective and outperforms the state-of-the-art approaches under widely used benchmarks by producing more precise geometry reconstructions. The code is available at https://github.com/list17/GridFormer.
Is Discretization Fusion All You Need for Collaborative Perception?
Collaborative perception in multi-agent system enhances overall perceptual capabilities by facilitating the exchange of complementary information among agents. Current mainstream collaborative perception methods rely on discretized feature maps to conduct fusion, which however, lacks flexibility in extracting and transmitting the informative features and can hardly focus on the informative features during fusion. To address these problems, this paper proposes a novel Anchor-Centric paradigm for Collaborative Object detection (ACCO). It avoids grid precision issues and allows more flexible and efficient anchor-centric communication and fusion. ACCO is composed by three main components: (1) Anchor featuring block (AFB) that targets to generate anchor proposals and projects prepared anchor queries to image features. (2) Anchor confidence generator (ACG) is designed to minimize communication by selecting only the features in the confident anchors to transmit. (3) A local-global fusion module, in which local fusion is anchor alignment-based fusion (LAAF) and global fusion is conducted by spatial-aware cross-attention (SACA). LAAF and SACA run in multi-layers, so agents conduct anchor-centric fusion iteratively to adjust the anchor proposals. Comprehensive experiments are conducted to evaluate ACCO on OPV2V and Dair-V2X datasets, which demonstrate ACCO's superiority in reducing the communication volume, and in improving the perception range and detection performances. Code can be found at: https://github.com/sidiangongyuan/ACCO{https://github.com/sidiangongyuan/ACCO}.
AnimateAnyMesh: A Feed-Forward 4D Foundation Model for Text-Driven Universal Mesh Animation
Recent advances in 4D content generation have attracted increasing attention, yet creating high-quality animated 3D models remains challenging due to the complexity of modeling spatio-temporal distributions and the scarcity of 4D training data. In this paper, we present AnimateAnyMesh, the first feed-forward framework that enables efficient text-driven animation of arbitrary 3D meshes. Our approach leverages a novel DyMeshVAE architecture that effectively compresses and reconstructs dynamic mesh sequences by disentangling spatial and temporal features while preserving local topological structures. To enable high-quality text-conditional generation, we employ a Rectified Flow-based training strategy in the compressed latent space. Additionally, we contribute the DyMesh Dataset, containing over 4M diverse dynamic mesh sequences with text annotations. Experimental results demonstrate that our method generates semantically accurate and temporally coherent mesh animations in a few seconds, significantly outperforming existing approaches in both quality and efficiency. Our work marks a substantial step forward in making 4D content creation more accessible and practical. All the data, code, and models will be open-released.
EPiC: Efficient Video Camera Control Learning with Precise Anchor-Video Guidance
Recent approaches on 3D camera control in video diffusion models (VDMs) often create anchor videos to guide diffusion models as a structured prior by rendering from estimated point clouds following annotated camera trajectories. However, errors inherent in point cloud estimation often lead to inaccurate anchor videos. Moreover, the requirement for extensive camera trajectory annotations further increases resource demands. To address these limitations, we introduce EPiC, an efficient and precise camera control learning framework that automatically constructs high-quality anchor videos without expensive camera trajectory annotations. Concretely, we create highly precise anchor videos for training by masking source videos based on first-frame visibility. This approach ensures high alignment, eliminates the need for camera trajectory annotations, and thus can be readily applied to any in-the-wild video to generate image-to-video (I2V) training pairs. Furthermore, we introduce Anchor-ControlNet, a lightweight conditioning module that integrates anchor video guidance in visible regions to pretrained VDMs, with less than 1% of backbone model parameters. By combining the proposed anchor video data and ControlNet module, EPiC achieves efficient training with substantially fewer parameters, training steps, and less data, without requiring modifications to the diffusion model backbone typically needed to mitigate rendering misalignments. Although being trained on masking-based anchor videos, our method generalizes robustly to anchor videos made with point clouds during inference, enabling precise 3D-informed camera control. EPiC achieves SOTA performance on RealEstate10K and MiraData for I2V camera control task, demonstrating precise and robust camera control ability both quantitatively and qualitatively. Notably, EPiC also exhibits strong zero-shot generalization to video-to-video scenarios.
GSTAR: Gaussian Surface Tracking and Reconstruction
3D Gaussian Splatting techniques have enabled efficient photo-realistic rendering of static scenes. Recent works have extended these approaches to support surface reconstruction and tracking. However, tracking dynamic surfaces with 3D Gaussians remains challenging due to complex topology changes, such as surfaces appearing, disappearing, or splitting. To address these challenges, we propose GSTAR, a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology. Given multi-view captures as input, GSTAR binds Gaussians to mesh faces to represent dynamic objects. For surfaces with consistent topology, GSTAR maintains the mesh topology and tracks the meshes using Gaussians. In regions where topology changes, GSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and the generation of new surfaces based on these optimized Gaussians. Additionally, we introduce a surface-based scene flow method that provides robust initialization for tracking between frames. Experiments demonstrate that our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications. Our project page with the code release is available at https://eth-ait.github.io/GSTAR/.
Homogenization framework for rigid and non-rigid foldable origami metamaterials
Origami metamaterials typically consist of folded sheets with periodic patterns, conferring them with remarkable mechanical properties. In the context of Continuum Mechanics, the majority of existing predictive methods are mechanism analogs which favor rigid folding and panel bending. While effective in predicting primary deformation modes, existing methods fall short in capturing the full spectrum of deformation of non-rigid foldable origami, such as the emergence of curvature along straight creases, local strain at vertices and warpage in panels. To fully capture the entire deformation spectrum and enhance the accuracy of existing methods, this paper introduces a homogenization framework for origami metamaterials where the faces are modeled as plate elements. Both asymptotic and energy-based homogenization methods are formulated and implemented. As a representative crease pattern, we examine the Miura origami sheet homogenized as an equivalent Kirchhoff-Love plate. The results reveal that certain effective elastic properties are nonlinearly related to both the initial fold angle and the crease stiffness. When benchmarked with results from fully resolved simulations, our framework yields errors up to 12.9\%, while existing models, including the bar-and-hinge model and the rigid-panel model, show up to 161\% error. The differences in errors are associated with the complex modes of crease and panel deformation in non-rigid origami, unexplored by the existing models. This work demonstrates a precise and efficient continuum framework for origami metamaterials as an effective strategy for predicting their elastic properties, understanding their mechanics, and designing their functionalities.
PhysRig: Differentiable Physics-Based Skinning and Rigging Framework for Realistic Articulated Object Modeling
Skinning and rigging are fundamental components in animation, articulated object reconstruction, motion transfer, and 4D generation. Existing approaches predominantly rely on Linear Blend Skinning (LBS), due to its simplicity and differentiability. However, LBS introduces artifacts such as volume loss and unnatural deformations, and it fails to model elastic materials like soft tissues, fur, and flexible appendages (e.g., elephant trunks, ears, and fatty tissues). In this work, we propose PhysRig: a differentiable physics-based skinning and rigging framework that overcomes these limitations by embedding the rigid skeleton into a volumetric representation (e.g., a tetrahedral mesh), which is simulated as a deformable soft-body structure driven by the animated skeleton. Our method leverages continuum mechanics and discretizes the object as particles embedded in an Eulerian background grid to ensure differentiability with respect to both material properties and skeletal motion. Additionally, we introduce material prototypes, significantly reducing the learning space while maintaining high expressiveness. To evaluate our framework, we construct a comprehensive synthetic dataset using meshes from Objaverse, The Amazing Animals Zoo, and MixaMo, covering diverse object categories and motion patterns. Our method consistently outperforms traditional LBS-based approaches, generating more realistic and physically plausible results. Furthermore, we demonstrate the applicability of our framework in the pose transfer task highlighting its versatility for articulated object modeling.
AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers
Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching the 100 millions, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce AB-UPT as a novel modeling scheme for building neural surrogates for CFD simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a novel divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a CAD geometry alone, omitting the need for costly CFD meshing procedures.
Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging
We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape.Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods.
AnchorAL: Computationally Efficient Active Learning for Large and Imbalanced Datasets
Active learning for imbalanced classification tasks is challenging as the minority classes naturally occur rarely. Gathering a large pool of unlabelled data is thus essential to capture minority instances. Standard pool-based active learning is computationally expensive on large pools and often reaches low accuracy by overfitting the initial decision boundary, thus failing to explore the input space and find minority instances. To address these issues we propose AnchorAL. At each iteration, AnchorAL chooses class-specific instances from the labelled set, or anchors, and retrieves the most similar unlabelled instances from the pool. This resulting subpool is then used for active learning. Using a small, fixed-sized subpool AnchorAL allows scaling any active learning strategy to large pools. By dynamically selecting different anchors at each iteration it promotes class balance and prevents overfitting the initial decision boundary, thus promoting the discovery of new clusters of minority instances. Experiments across different classification tasks, active learning strategies, and model architectures AnchorAL is (i) faster, often reducing runtime from hours to minutes, (ii) trains more performant models, (iii) and returns more balanced datasets than competing methods.
SingularTrajectory: Universal Trajectory Predictor Using Diffusion Model
There are five types of trajectory prediction tasks: deterministic, stochastic, domain adaptation, momentary observation, and few-shot. These associated tasks are defined by various factors, such as the length of input paths, data split and pre-processing methods. Interestingly, even though they commonly take sequential coordinates of observations as input and infer future paths in the same coordinates as output, designing specialized architectures for each task is still necessary. For the other task, generality issues can lead to sub-optimal performances. In this paper, we propose SingularTrajectory, a diffusion-based universal trajectory prediction framework to reduce the performance gap across the five tasks. The core of SingularTrajectory is to unify a variety of human dynamics representations on the associated tasks. To do this, we first build a Singular space to project all types of motion patterns from each task into one embedding space. We next propose an adaptive anchor working in the Singular space. Unlike traditional fixed anchor methods that sometimes yield unacceptable paths, our adaptive anchor enables correct anchors, which are put into a wrong location, based on a traversability map. Finally, we adopt a diffusion-based predictor to further enhance the prototype paths using a cascaded denoising process. Our unified framework ensures the generality across various benchmark settings such as input modality, and trajectory lengths. Extensive experiments on five public benchmarks demonstrate that SingularTrajectory substantially outperforms existing models, highlighting its effectiveness in estimating general dynamics of human movements. Code is publicly available at https://github.com/inhwanbae/SingularTrajectory .
DEFT: Differentiable Branched Discrete Elastic Rods for Modeling Furcated DLOs in Real-Time
Autonomous wire harness assembly requires robots to manipulate complex branched cables with high precision and reliability. A key challenge in automating this process is predicting how these flexible and branched structures behave under manipulation. Without accurate predictions, it is difficult for robots to reliably plan or execute assembly operations. While existing research has made progress in modeling single-threaded Deformable Linear Objects (DLOs), extending these approaches to Branched Deformable Linear Objects (BDLOs) presents fundamental challenges. The junction points in BDLOs create complex force interactions and strain propagation patterns that cannot be adequately captured by simply connecting multiple single-DLO models. To address these challenges, this paper presents Differentiable discrete branched Elastic rods for modeling Furcated DLOs in real-Time (DEFT), a novel framework that combines a differentiable physics-based model with a learning framework to: 1) accurately model BDLO dynamics, including dynamic propagation at junction points and grasping in the middle of a BDLO, 2) achieve efficient computation for real-time inference, and 3) enable planning to demonstrate dexterous BDLO manipulation. A comprehensive series of real-world experiments demonstrates DEFT's efficacy in terms of accuracy, computational speed, and generalizability compared to state-of-the-art alternatives. Project page:https://roahmlab.github.io/DEFT/.
Neural Graphics Primitives-based Deformable Image Registration for On-the-fly Motion Extraction
Intra-fraction motion in radiotherapy is commonly modeled using deformable image registration (DIR). However, existing methods often struggle to balance speed and accuracy, limiting their applicability in clinical scenarios. This study introduces a novel approach that harnesses Neural Graphics Primitives (NGP) to optimize the displacement vector field (DVF). Our method leverages learned primitives, processed as splats, and interpolates within space using a shallow neural network. Uniquely, it enables self-supervised optimization at an ultra-fast speed, negating the need for pre-training on extensive datasets and allowing seamless adaptation to new cases. We validated this approach on the 4D-CT lung dataset DIR-lab, achieving a target registration error (TRE) of 1.15\pm1.15 mm within a remarkable time of 1.77 seconds. Notably, our method also addresses the sliding boundary problem, a common challenge in conventional DIR methods.
Zero-Shot Dynamic Concept Personalization with Grid-Based LoRA
Recent advances in text-to-video generation have enabled high-quality synthesis from text and image prompts. While the personalization of dynamic concepts, which capture subject-specific appearance and motion from a single video, is now feasible, most existing methods require per-instance fine-tuning, limiting scalability. We introduce a fully zero-shot framework for dynamic concept personalization in text-to-video models. Our method leverages structured 2x2 video grids that spatially organize input and output pairs, enabling the training of lightweight Grid-LoRA adapters for editing and composition within these grids. At inference, a dedicated Grid Fill module completes partially observed layouts, producing temporally coherent and identity preserving outputs. Once trained, the entire system operates in a single forward pass, generalizing to previously unseen dynamic concepts without any test-time optimization. Extensive experiments demonstrate high-quality and consistent results across a wide range of subjects beyond trained concepts and editing scenarios.
FaceCLIPNeRF: Text-driven 3D Face Manipulation using Deformable Neural Radiance Fields
As recent advances in Neural Radiance Fields (NeRF) have enabled high-fidelity 3D face reconstruction and novel view synthesis, its manipulation also became an essential task in 3D vision. However, existing manipulation methods require extensive human labor, such as a user-provided semantic mask and manual attribute search unsuitable for non-expert users. Instead, our approach is designed to require a single text to manipulate a face reconstructed with NeRF. To do so, we first train a scene manipulator, a latent code-conditional deformable NeRF, over a dynamic scene to control a face deformation using the latent code. However, representing a scene deformation with a single latent code is unfavorable for compositing local deformations observed in different instances. As so, our proposed Position-conditional Anchor Compositor (PAC) learns to represent a manipulated scene with spatially varying latent codes. Their renderings with the scene manipulator are then optimized to yield high cosine similarity to a target text in CLIP embedding space for text-driven manipulation. To the best of our knowledge, our approach is the first to address the text-driven manipulation of a face reconstructed with NeRF. Extensive results, comparisons, and ablation studies demonstrate the effectiveness of our approach.
AnimaMimic: Imitating 3D Animation from Video Priors
Creating realistic 3D animation remains a time-consuming and expertise-dependent process, requiring manual rigging, keyframing, and fine-tuning of complex motions. Meanwhile, video diffusion models have recently demonstrated remarkable motion imagination in 2D, generating dynamic and visually coherent motion from text or image prompts. However, their results lack explicit 3D structure and cannot be directly used for animation or simulation. We present AnimaMimic, a framework that animates static 3D meshes using motion priors learned from video diffusion models. Starting from an input mesh, AnimaMimic synthesizes a monocular animation video, automatically constructs a skeleton with skinning weights, and refines joint parameters through differentiable rendering and video-based supervision. To further enhance realism, we integrate a differentiable simulation module that refines mesh deformation through physically grounded soft-tissue dynamics. Our method bridges the creativity of video diffusion and the structural control of 3D rigged animation, producing physically plausible, temporally coherent, and artist-editable motion sequences that integrate seamlessly into standard animation pipelines. Our project page is at: https://xpandora.github.io/AnimaMimic/
GridFormer: Residual Dense Transformer with Grid Structure for Image Restoration in Adverse Weather Conditions
Image restoration in adverse weather conditions is a difficult task in computer vision. In this paper, we propose a novel transformer-based framework called GridFormer which serves as a backbone for image restoration under adverse weather conditions. GridFormer is designed in a grid structure using a residual dense transformer block, and it introduces two core designs. First, it uses an enhanced attention mechanism in the transformer layer. The mechanism includes stages of the sampler and compact self-attention to improve efficiency, and a local enhancement stage to strengthen local information. Second, we introduce a residual dense transformer block (RDTB) as the final GridFormer layer. This design further improves the network's ability to learn effective features from both preceding and current local features. The GridFormer framework achieves state-of-the-art results on five diverse image restoration tasks in adverse weather conditions, including image deraining, dehazing, deraining & dehazing, desnowing, and multi-weather restoration. The source code and pre-trained models will be released.
Splatography: Sparse multi-view dynamic Gaussian Splatting for filmmaking challenges
Deformable Gaussian Splatting (GS) accomplishes photorealistic dynamic 3-D reconstruction from dense multi-view video (MVV) by learning to deform a canonical GS representation. However, in filmmaking, tight budgets can result in sparse camera configurations, which limits state-of-the-art (SotA) methods when capturing complex dynamic features. To address this issue, we introduce an approach that splits the canonical Gaussians and deformation field into foreground and background components using a sparse set of masks for frames at t=0. Each representation is separately trained on different loss functions during canonical pre-training. Then, during dynamic training, different parameters are modeled for each deformation field following common filmmaking practices. The foreground stage contains diverse dynamic features so changes in color, position and rotation are learned. While, the background containing film-crew and equipment, is typically dimmer and less dynamic so only changes in point position are learned. Experiments on 3-D and 2.5-D entertainment datasets show that our method produces SotA qualitative and quantitative results; up to 3 PSNR higher with half the model size on 3-D scenes. Unlike the SotA and without the need for dense mask supervision, our method also produces segmented dynamic reconstructions including transparent and dynamic textures. Code and video comparisons are available online: https://interims-git.github.io/
Gravity Network for end-to-end small lesion detection
This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images. Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found. To address this, our approach introduces a new type of pixel-based anchor that dynamically moves towards the targeted lesion for detection. We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions. We conducted experiments on two well-established medical problems involving small lesions to evaluate the performance of the proposed approach: microcalcifications detection in digital mammograms and microaneurysms detection in digital fundus images. Our method demonstrates promising results in effectively detecting small lesions in these medical imaging tasks.
Vision Grid Transformer for Document Layout Analysis
Document pre-trained models and grid-based models have proven to be very effective on various tasks in Document AI. However, for the document layout analysis (DLA) task, existing document pre-trained models, even those pre-trained in a multi-modal fashion, usually rely on either textual features or visual features. Grid-based models for DLA are multi-modality but largely neglect the effect of pre-training. To fully leverage multi-modal information and exploit pre-training techniques to learn better representation for DLA, in this paper, we present VGT, a two-stream Vision Grid Transformer, in which Grid Transformer (GiT) is proposed and pre-trained for 2D token-level and segment-level semantic understanding. Furthermore, a new dataset named D^4LA, which is so far the most diverse and detailed manually-annotated benchmark for document layout analysis, is curated and released. Experiment results have illustrated that the proposed VGT model achieves new state-of-the-art results on DLA tasks, e.g. PubLayNet (95.7%rightarrow96.2%), DocBank (79.6%rightarrow84.1%), and D^4LA (67.7%rightarrow68.8%). The code and models as well as the D^4LA dataset will be made publicly available ~https://github.com/AlibabaResearch/AdvancedLiterateMachinery.
RigMo: Unifying Rig and Motion Learning for Generative Animation
Despite significant progress in 4D generation, rig and motion, the core structural and dynamic components of animation are typically modeled as separate problems. Existing pipelines rely on ground-truth skeletons and skinning weights for motion generation and treat auto-rigging as an independent process, undermining scalability and interpretability. We present RigMo, a unified generative framework that jointly learns rig and motion directly from raw mesh sequences, without any human-provided rig annotations. RigMo encodes per-vertex deformations into two compact latent spaces: a rig latent that decodes into explicit Gaussian bones and skinning weights, and a motion latent that produces time-varying SE(3) transformations. Together, these outputs define an animatable mesh with explicit structure and coherent motion, enabling feed-forward rig and motion inference for deformable objects. Beyond unified rig-motion discovery, we introduce a Motion-DiT model operating in RigMo's latent space and demonstrate that these structure-aware latents can naturally support downstream motion generation tasks. Experiments on DeformingThings4D, Objaverse-XL, and TrueBones demonstrate that RigMo learns smooth, interpretable, and physically plausible rigs, while achieving superior reconstruction and category-level generalization compared to existing auto-rigging and deformation baselines. RigMo establishes a new paradigm for unified, structure-aware, and scalable dynamic 3D modeling.
BrightDreamer: Generic 3D Gaussian Generative Framework for Fast Text-to-3D Synthesis
Text-to-3D synthesis has recently seen intriguing advances by combining the text-to-image models with 3D representation methods, e.g., Gaussian Splatting (GS), via Score Distillation Sampling (SDS). However, a hurdle of existing methods is the low efficiency, per-prompt optimization for a single 3D object. Therefore, it is imperative for a paradigm shift from per-prompt optimization to one-stage generation for any unseen text prompts, which yet remains challenging. A hurdle is how to directly generate a set of millions of 3D Gaussians to represent a 3D object. This paper presents BrightDreamer, an end-to-end single-stage approach that can achieve generalizable and fast (77 ms) text-to-3D generation. Our key idea is to formulate the generation process as estimating the 3D deformation from an anchor shape with predefined positions. For this, we first propose a Text-guided Shape Deformation (TSD) network to predict the deformed shape and its new positions, used as the centers (one attribute) of 3D Gaussians. To estimate the other four attributes (i.e., scaling, rotation, opacity, and SH coefficient), we then design a novel Text-guided Triplane Generator (TTG) to generate a triplane representation for a 3D object. The center of each Gaussian enables us to transform the triplane feature into the four attributes. The generated 3D Gaussians can be finally rendered at 705 frames per second. Extensive experiments demonstrate the superiority of our method over existing methods. Also, BrightDreamer possesses a strong semantic understanding capability even for complex text prompts. The project code is available at https://vlislab22.github.io/BrightDreamer.
GridNet-HD: A High-Resolution Multi-Modal Dataset for LiDAR-Image Fusion on Power Line Infrastructure
This paper presents GridNet-HD, a multi-modal dataset for 3D semantic segmentation of overhead electrical infrastructures, pairing high-density LiDAR with high-resolution oblique imagery. The dataset comprises 7,694 images and 2.5 billion points annotated into 11 classes, with predefined splits and mIoU metrics. Unimodal (LiDAR-only, image-only) and multi-modal fusion baselines are provided. On GridNet-HD, fusion models outperform the best unimodal baseline by +5.55 mIoU, highlighting the complementarity of geometry and appearance. As reviewed in Sec. 2, no public dataset jointly provides high-density LiDAR and high-resolution oblique imagery with 3D semantic labels for power-line assets. Dataset, baselines, and codes are available: https://huggingface.co/collections/heig-vd-geo/gridnet-hd.
Learning Nonlinear Responses in PET Bottle Buckling with a Hybrid DeepONet-Transolver Framework
Neural surrogates and operator networks for solving partial differential equation (PDE) problems have attracted significant research interest in recent years. However, most existing approaches are limited in their ability to generalize solutions across varying non-parametric geometric domains. In this work, we address this challenge in the context of Polyethylene Terephthalate (PET) bottle buckling analysis, a representative packaging design problem conventionally solved using computationally expensive finite element analysis (FEA). We introduce a hybrid DeepONet-Transolver framework that simultaneously predicts nodal displacement fields and the time evolution of reaction forces during top load compression. Our methodology is evaluated on two families of bottle geometries parameterized by two and four design variables. Training data is generated using nonlinear FEA simulations in Abaqus for 254 unique designs per family. The proposed framework achieves mean relative L^{2} errors of 2.5-13% for displacement fields and approximately 2.4% for time-dependent reaction forces for the four-parameter bottle family. Point-wise error analyses further show absolute displacement errors on the order of 10^{-4}-10^{-3}, with the largest discrepancies confined to localized geometric regions. Importantly, the model accurately captures key physical phenomena, such as buckling behavior, across diverse bottle geometries. These results highlight the potential of our framework as a scalable and computationally efficient surrogate, particularly for multi-task predictions in computational mechanics and applications requiring rapid design evaluation.
MetricGrids: Arbitrary Nonlinear Approximation with Elementary Metric Grids based Implicit Neural Representation
This paper presents MetricGrids, a novel grid-based neural representation that combines elementary metric grids in various metric spaces to approximate complex nonlinear signals. While grid-based representations are widely adopted for their efficiency and scalability, the existing feature grids with linear indexing for continuous-space points can only provide degenerate linear latent space representations, and such representations cannot be adequately compensated to represent complex nonlinear signals by the following compact decoder. To address this problem while keeping the simplicity of a regular grid structure, our approach builds upon the standard grid-based paradigm by constructing multiple elementary metric grids as high-order terms to approximate complex nonlinearities, following the Taylor expansion principle. Furthermore, we enhance model compactness with hash encoding based on different sparsities of the grids to prevent detrimental hash collisions, and a high-order extrapolation decoder to reduce explicit grid storage requirements. experimental results on both 2D and 3D reconstructions demonstrate the superior fitting and rendering accuracy of the proposed method across diverse signal types, validating its robustness and generalizability. Code is available at https://github.com/wangshu31/MetricGrids}{https://github.com/wangshu31/MetricGrids.
SAGA: Surface-Aligned Gaussian Avatar
This paper presents a Surface-Aligned Gaussian representation for creating animatable human avatars from monocular videos,aiming at improving the novel view and pose synthesis performance while ensuring fast training and real-time rendering. Recently,3DGS has emerged as a more efficient and expressive alternative to NeRF, and has been used for creating dynamic human avatars. However,when applied to the severely ill-posed task of monocular dynamic reconstruction, the Gaussians tend to overfit the constantly changing regions such as clothes wrinkles or shadows since these regions cannot provide consistent supervision, resulting in noisy geometry and abrupt deformation that typically fail to generalize under novel views and poses.To address these limitations, we present SAGA,i.e.,Surface-Aligned Gaussian Avatar,which aligns the Gaussians with a mesh to enforce well-defined geometry and consistent deformation, thereby improving generalization under novel views and poses. Unlike existing strict alignment methods that suffer from limited expressive power and low realism,SAGA employs a two-stage alignment strategy where the Gaussians are first adhered on while then detached from the mesh, thus facilitating both good geometry and high expressivity. In the Adhered Stage, we improve the flexibility of Adhered-on-Mesh Gaussians by allowing them to flow on the mesh, in contrast to existing methods that rigidly bind Gaussians to fixed location. In the second Detached Stage, we introduce a Gaussian-Mesh Alignment regularization, which allows us to unleash the expressivity by detaching the Gaussians but maintain the geometric alignment by minimizing their location and orientation offsets from the bound triangles. Finally, since the Gaussians may drift outside the bound triangles during optimization, an efficient Walking-on-Mesh strategy is proposed to dynamically update the bound triangles.
The Devil in the Details: Emergent Misalignment, Format and Coherence in Open-Weights LLMs
Prior work has shown that fine-tuning models on a narrow domain with misaligned data can lead to broad misalignment - a phenomenon termed "emergent misalignment" (Betley et al. 2025). While all tested models were susceptible to emergent misalignment, some models showed more resistance than others. Specifically the Qwen-2.5 family proved to be relatively resistant, while GPT-4o exhibited the strongest misalignment. In this paper we evaluate if current-generation open-weights models exhibit similar resistance to the Qwen-2.5 family and measure misalignment robustness over a range of model architectures and scales. We replicate the effect across nine modern open-weights models (Gemma 3 and Qwen 3 families, 1B-32B parameters). Models fine-tuned on insecure code generation show a 0.68% misalignment rate (compared to 0.07% for base models), matching the lower end of prior open-model results but dramatically lower than GPT-4o's 20%. We identify a critical format-dependent vulnerability: requiring JSON output doubles misalignment rates compared to natural language prompts (0.96% vs 0.42%). This suggests that structural constraints may bypass safety training by reducing the model's 'degrees of freedom' to refuse. These findings confirm emergent misalignment as a reproducible phenomenon in modern open-weights models, with rates substantially lower than observed in proprietary systems.
Deformable ConvNets v2: More Deformable, Better Results
The superior performance of Deformable Convolutional Networks arises from its ability to adapt to the geometric variations of objects. Through an examination of its adaptive behavior, we observe that while the spatial support for its neural features conforms more closely than regular ConvNets to object structure, this support may nevertheless extend well beyond the region of interest, causing features to be influenced by irrelevant image content. To address this problem, we present a reformulation of Deformable ConvNets that improves its ability to focus on pertinent image regions, through increased modeling power and stronger training. The modeling power is enhanced through a more comprehensive integration of deformable convolution within the network, and by introducing a modulation mechanism that expands the scope of deformation modeling. To effectively harness this enriched modeling capability, we guide network training via a proposed feature mimicking scheme that helps the network to learn features that reflect the object focus and classification power of R-CNN features. With the proposed contributions, this new version of Deformable ConvNets yields significant performance gains over the original model and produces leading results on the COCO benchmark for object detection and instance segmentation.
Physically Compatible 3D Object Modeling from a Single Image
We present a computational framework that transforms single images into 3D physical objects. The visual geometry of a physical object in an image is determined by three orthogonal attributes: mechanical properties, external forces, and rest-shape geometry. Existing single-view 3D reconstruction methods often overlook this underlying composition, presuming rigidity or neglecting external forces. Consequently, the reconstructed objects fail to withstand real-world physical forces, resulting in instability or undesirable deformation -- diverging from their intended designs as depicted in the image. Our optimization framework addresses this by embedding physical compatibility into the reconstruction process. We explicitly decompose the three physical attributes and link them through static equilibrium, which serves as a hard constraint, ensuring that the optimized physical shapes exhibit desired physical behaviors. Evaluations on a dataset collected from Objaverse demonstrate that our framework consistently enhances the physical realism of 3D models over existing methods. The utility of our framework extends to practical applications in dynamic simulations and 3D printing, where adherence to physical compatibility is paramount.
Mask TextSpotter v3: Segmentation Proposal Network for Robust Scene Text Spotting
Recent end-to-end trainable methods for scene text spotting, integrating detection and recognition, showed much progress. However, most of the current arbitrary-shape scene text spotters use region proposal networks (RPN) to produce proposals. RPN relies heavily on manually designed anchors and its proposals are represented with axis-aligned rectangles. The former presents difficulties in handling text instances of extreme aspect ratios or irregular shapes, and the latter often includes multiple neighboring instances into a single proposal, in cases of densely oriented text. To tackle these problems, we propose Mask TextSpotter v3, an end-to-end trainable scene text spotter that adopts a Segmentation Proposal Network (SPN) instead of an RPN. Our SPN is anchor-free and gives accurate representations of arbitrary-shape proposals. It is therefore superior to RPN in detecting text instances of extreme aspect ratios or irregular shapes. Furthermore, the accurate proposals produced by SPN allow masked RoI features to be used for decoupling neighboring text instances. As a result, our Mask TextSpotter v3 can handle text instances of extreme aspect ratios or irregular shapes, and its recognition accuracy won't be affected by nearby text or background noise. Specifically, we outperform state-of-the-art methods by 21.9 percent on the Rotated ICDAR 2013 dataset (rotation robustness), 5.9 percent on the Total-Text dataset (shape robustness), and achieve state-of-the-art performance on the MSRA-TD500 dataset (aspect ratio robustness). Code is available at: https://github.com/MhLiao/MaskTextSpotterV3
4D-VGGT: A General Foundation Model with SpatioTemporal Awareness for Dynamic Scene Geometry Estimation
We investigate a challenging task of dynamic scene geometry estimation, which requires representing both spatial and temporal features. Typically, existing methods align the two features into a unified latent space to model scene geometry. However, this unified paradigm suffers from potential mismatched representation due to the heterogeneous nature between spatial and temporal features. In this work, we propose 4D-VGGT, a general foundation model with divide-and-conquer spatiotemporal representation for dynamic scene geometry. Our model is divided into three aspects: 1) Multi-setting input. We design an adaptive visual grid that supports input sequences with arbitrary numbers of views and time steps. 2) Multi-level representation. We propose a cross-view global fusion for spatial representation and a cross-time local fusion for temporal representation. 3) Multi-task prediction. We append multiple task-specific heads to spatiotemporal representations, enabling a comprehensive visual geometry estimation for dynamic scenes. Under this unified framework, these components enhance the feature discriminability and application universality of our model for dynamic scenes. In addition, we integrate multiple geometry datasets to train our model and conduct extensive experiments to verify the effectiveness of our method across various tasks on multiple dynamic scene geometry benchmarks.
Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis
While surface-based view synthesis algorithms are appealing due to their low computational requirements, they often struggle to reproduce thin structures. In contrast, more expensive methods that model the scene's geometry as a volumetric density field (e.g. NeRF) excel at reconstructing fine geometric detail. However, density fields often represent geometry in a "fuzzy" manner, which hinders exact localization of the surface. In this work, we modify density fields to encourage them to converge towards surfaces, without compromising their ability to reconstruct thin structures. First, we employ a discrete opacity grid representation instead of a continuous density field, which allows opacity values to discontinuously transition from zero to one at the surface. Second, we anti-alias by casting multiple rays per pixel, which allows occlusion boundaries and subpixel structures to be modelled without using semi-transparent voxels. Third, we minimize the binary entropy of the opacity values, which facilitates the extraction of surface geometry by encouraging opacity values to binarize towards the end of training. Lastly, we develop a fusion-based meshing strategy followed by mesh simplification and appearance model fitting. The compact meshes produced by our model can be rendered in real-time on mobile devices and achieve significantly higher view synthesis quality compared to existing mesh-based approaches.
Drivable 3D Gaussian Avatars
We present Drivable 3D Gaussian Avatars (D3GA), the first 3D controllable model for human bodies rendered with Gaussian splats. Current photorealistic drivable avatars require either accurate 3D registrations during training, dense input images during testing, or both. The ones based on neural radiance fields also tend to be prohibitively slow for telepresence applications. This work uses the recently presented 3D Gaussian Splatting (3DGS) technique to render realistic humans at real-time framerates, using dense calibrated multi-view videos as input. To deform those primitives, we depart from the commonly used point deformation method of linear blend skinning (LBS) and use a classic volumetric deformation method: cage deformations. Given their smaller size, we drive these deformations with joint angles and keypoints, which are more suitable for communication applications. Our experiments on nine subjects with varied body shapes, clothes, and motions obtain higher-quality results than state-of-the-art methods when using the same training and test data.
