new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 22

Telecom Foundation Models: Applications, Challenges, and Future Trends

Telecom networks are becoming increasingly complex, with diversified deployment scenarios, multi-standards, and multi-vendor support. The intricate nature of the telecom network ecosystem presents challenges to effectively manage, operate, and optimize networks. To address these hurdles, Artificial Intelligence (AI) has been widely adopted to solve different tasks in telecom networks. However, these conventional AI models are often designed for specific tasks, rely on extensive and costly-to-collect labeled data that require specialized telecom expertise for development and maintenance. The AI models usually fail to generalize and support diverse deployment scenarios and applications. In contrast, Foundation Models (FMs) show effective generalization capabilities in various domains in language, vision, and decision-making tasks. FMs can be trained on multiple data modalities generated from the telecom ecosystem and leverage specialized domain knowledge. Moreover, FMs can be fine-tuned to solve numerous specialized tasks with minimal task-specific labeled data and, in some instances, are able to leverage context to solve previously unseen problems. At the dawn of 6G, this paper investigates the potential opportunities of using FMs to shape the future of telecom technologies and standards. In particular, the paper outlines a conceptual process for developing Telecom FMs (TFMs) and discusses emerging opportunities for orchestrating specialized TFMs for network configuration, operation, and maintenance. Finally, the paper discusses the limitations and challenges of developing and deploying TFMs.

  • 4 authors
·
Aug 2, 2024

Multimodal Wireless Foundation Models

Wireless foundation models (WFMs) have recently demonstrated promising capabilities, jointly performing multiple wireless functions and adapting effectively to new environments. However, while current WFMs process only one modality, depending on the task and operating conditions, the most informative modality changes and no single modality is best for all tasks. WFMs should therefore be designed to accept multiple modalities to enable a broader and more diverse range of tasks and scenarios. In this work, we propose and build the first multimodal wireless foundation model capable of processing both raw IQ streams and image-like wireless modalities (e.g., spectrograms and CSI) and performing multiple tasks across both. We introduce masked wireless modeling for the multimodal setting, a self-supervised objective and pretraining recipe that learns a joint representation from IQ streams and image-like wireless modalities. We evaluate the model on five tasks across both modality families: image-based (human activity sensing, RF signal classification, 5G NR positioning) and IQ-based (RF device fingerprinting, interference detection/classification). The multimodal WFM is competitive with single-modality WFMs, and in several cases surpasses their performance. Our results demonstrates the strong potential of developing multimodal WFMs that support diverse wireless tasks across different modalities. We believe this provides a concrete step toward both AI-native 6G and the vision of joint sensing, communication, and localization.

  • 2 authors
·
Nov 19, 2025

AIR-Bench 2024: A Safety Benchmark Based on Risk Categories from Regulations and Policies

Foundation models (FMs) provide societal benefits but also amplify risks. Governments, companies, and researchers have proposed regulatory frameworks, acceptable use policies, and safety benchmarks in response. However, existing public benchmarks often define safety categories based on previous literature, intuitions, or common sense, leading to disjointed sets of categories for risks specified in recent regulations and policies, which makes it challenging to evaluate and compare FMs across these benchmarks. To bridge this gap, we introduce AIR-Bench 2024, the first AI safety benchmark aligned with emerging government regulations and company policies, following the regulation-based safety categories grounded in our AI risks study, AIR 2024. AIR 2024 decomposes 8 government regulations and 16 company policies into a four-tiered safety taxonomy with 314 granular risk categories in the lowest tier. AIR-Bench 2024 contains 5,694 diverse prompts spanning these categories, with manual curation and human auditing to ensure quality. We evaluate leading language models on AIR-Bench 2024, uncovering insights into their alignment with specified safety concerns. By bridging the gap between public benchmarks and practical AI risks, AIR-Bench 2024 provides a foundation for assessing model safety across jurisdictions, fostering the development of safer and more responsible AI systems.

  • 12 authors
·
Jul 11, 2024