- PReLU: Yet Another Single-Layer Solution to the XOR Problem This paper demonstrates that a single-layer neural network using Parametric Rectified Linear Unit (PReLU) activation can solve the XOR problem, a simple fact that has been overlooked so far. We compare this solution to the multi-layer perceptron (MLP) and the Growing Cosine Unit (GCU) activation function and explain why PReLU enables this capability. Our results show that the single-layer PReLU network can achieve 100\% success rate in a wider range of learning rates while using only three learnable parameters. 2 authors · Sep 16, 2024
- Black hole information turbulence and the Hubble tension A major outstanding challenge in cosmology is the persistent discrepancy between the Hubble constant obtained from early and late universe measurements -- the Hubble tension. Examining cosmological evolution through the lens of information growth within a black hole we show the appearence of two fractal growing processes characterizing the early and late ages. These fractals induce space growth rates of 62.79pm5.59 km/s/Mpc and 70.07pm0.09 km/s/Mpc; close to the current values of the Hubble constants involved in the tension. These results strongly suggest that the Hubble tension is not given by unexpected large-scale structures or multiple, unrelated errors but by innate properties underlying the universe dynamics. 1 authors · Mar 1, 2025