1 Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion. 2 authors · May 8, 2023
1 Federated PCA on Grassmann Manifold for IoT Anomaly Detection With the proliferation of the Internet of Things (IoT) and the rising interconnectedness of devices, network security faces significant challenges, especially from anomalous activities. While traditional machine learning-based intrusion detection systems (ML-IDS) effectively employ supervised learning methods, they possess limitations such as the requirement for labeled data and challenges with high dimensionality. Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions but pose challenges in deployment onto resource-constrained IoT devices and in interpretability. To address these concerns, this paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that leverages Principal Component Analysis (PCA) and the Alternating Directions Method Multipliers (ADMM) to learn common representations of distributed non-i.i.d. datasets. Building on the FedPCA framework, we propose two algorithms, FEDPE in Euclidean space and FEDPG on Grassmann manifolds. Our approach enables real-time threat detection and mitigation at the device level, enhancing network resilience while ensuring privacy. Moreover, the proposed algorithms are accompanied by theoretical convergence rates even under a subsampling scheme, a novel result. Experimental results on the UNSW-NB15 and TON-IoT datasets show that our proposed methods offer performance in anomaly detection comparable to nonlinear baselines, while providing significant improvements in communication and memory efficiency, underscoring their potential for securing IoT networks. 7 authors · Jul 10, 2024
- Chordal Averaging on Flag Manifolds and Its Applications This paper presents a new, provably-convergent algorithm for computing the flag-mean and flag-median of a set of points on a flag manifold under the chordal metric. The flag manifold is a mathematical space consisting of flags, which are sequences of nested subspaces of a vector space that increase in dimension. The flag manifold is a superset of a wide range of known matrix spaces, including Stiefel and Grassmanians, making it a general object that is useful in a wide variety computer vision problems. To tackle the challenge of computing first order flag statistics, we first transform the problem into one that involves auxiliary variables constrained to the Stiefel manifold. The Stiefel manifold is a space of orthogonal frames, and leveraging the numerical stability and efficiency of Stiefel-manifold optimization enables us to compute the flag-mean effectively. Through a series of experiments, we show the competence of our method in Grassmann and rotation averaging, as well as principal component analysis. We release our source code under https://github.com/nmank/FlagAveraging. 2 authors · Mar 23, 2023
1 Federated PCA on Grassmann Manifold for Anomaly Detection in IoT Networks In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks. 5 authors · Dec 22, 2022
1 Flagfolds By interpreting the product of the Principal Component Analysis, that is the covariance matrix, as a sequence of nested subspaces naturally coming with weights according to the level of approximation they provide, we are able to embed all d--dimensional Grassmannians into a stratified space of covariance matrices. We observe that Grassmannians constitute the lowest dimensional skeleton of the stratification while it is possible to define a Riemaniann metric on the highest dimensional and dense stratum, such a metric being compatible with the global stratification. With such a Riemaniann metric at hand, it is possible to look for geodesics between two linear subspaces of different dimensions that do not go through higher dimensional linear subspaces as would euclidean geodesics. Building upon the proposed embedding of Grassmannians into the stratified space of covariance matrices, we generalize the concept of varifolds to what we call flagfolds in order to model multi-dimensional shapes. 2 authors · May 17, 2023
- Get the Best of Both Worlds: Improving Accuracy and Transferability by Grassmann Class Representation We generalize the class vectors found in neural networks to linear subspaces (i.e.~points in the Grassmann manifold) and show that the Grassmann Class Representation (GCR) enables the simultaneous improvement in accuracy and feature transferability. In GCR, each class is a subspace and the logit is defined as the norm of the projection of a feature onto the class subspace. We integrate Riemannian SGD into deep learning frameworks such that class subspaces in a Grassmannian are jointly optimized with the rest model parameters. Compared to the vector form, the representative capability of subspaces is more powerful. We show that on ImageNet-1K, the top-1 error of ResNet50-D, ResNeXt50, Swin-T and Deit3-S are reduced by 5.6%, 4.5%, 3.0% and 3.5%, respectively. Subspaces also provide freedom for features to vary and we observed that the intra-class feature variability grows when the subspace dimension increases. Consequently, we found the quality of GCR features is better for downstream tasks. For ResNet50-D, the average linear transfer accuracy across 6 datasets improves from 77.98% to 79.70% compared to the strong baseline of vanilla softmax. For Swin-T, it improves from 81.5% to 83.4% and for Deit3, it improves from 73.8% to 81.4%. With these encouraging results, we believe that more applications could benefit from the Grassmann class representation. Code is released at https://github.com/innerlee/GCR. 3 authors · Aug 3, 2023
- Second-order difference subspace Subspace representation is a fundamental technique in various fields of machine learning. Analyzing a geometrical relationship among multiple subspaces is essential for understanding subspace series' temporal and/or spatial dynamics. This paper proposes the second-order difference subspace, a higher-order extension of the first-order difference subspace between two subspaces that can analyze the geometrical difference between them. As a preliminary for that, we extend the definition of the first-order difference subspace to the more general setting that two subspaces with different dimensions have an intersection. We then define the second-order difference subspace by combining the concept of first-order difference subspace and principal component subspace (Karcher mean) between two subspaces, motivated by the second-order central difference method. We can understand that the first/second-order difference subspaces correspond to the velocity and acceleration of subspace dynamics from the viewpoint of a geodesic on a Grassmann manifold. We demonstrate the validity and naturalness of our second-order difference subspace by showing numerical results on two applications: temporal shape analysis of a 3D object and time series analysis of a biometric signal. 4 authors · Sep 13, 2024
1 Positive Geometries and Canonical Forms Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes. 3 authors · Mar 13, 2017
1 Barycentric Subspace Analysis on Manifolds This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA). 1 authors · Jul 11, 2016
- Riemannian Batch Normalization: A Gyro Approach Normalization layers are crucial for deep learning, but their Euclidean formulations are inadequate for data on manifolds. On the other hand, many Riemannian manifolds in machine learning admit gyro-structures, enabling principled extensions of Euclidean neural networks to non-Euclidean domains. Inspired by this, we introduce GyroBN, a principled Riemannian batch normalization framework for gyrogroups. We establish two necessary conditions, namely pseudo-reduction and gyroisometric gyrations, that guarantee GyroBN with theoretical control over sample statistics, and show that these conditions hold for all known gyrogroups in machine learning. Our framework also incorporates several existing Riemannian normalization methods as special cases. We further instantiate GyroBN on seven representative geometries, including the Grassmannian, five constant curvature spaces, and the correlation manifold, and derive novel gyro and Riemannian structures to enable these instantiations. Experiments across these geometries demonstrate the effectiveness of GyroBN. The code is available at https://github.com/GitZH-Chen/GyroBN.git. 4 authors · Sep 8
- Clustering Cluster Algebras with Clusters Classification of cluster variables in cluster algebras (in particular, Grassmannian cluster algebras) is an important problem, which has direct application to computations of scattering amplitudes in physics. In this paper, we apply the tableaux method to classify cluster variables in Grassmannian cluster algebras C[Gr(k,n)] up to (k,n)=(3,12), (4,10), or (4,12) up to a certain number of columns of tableaux, using HPC clusters. These datasets are made available on GitHub. Supervised and unsupervised machine learning methods are used to analyse this data and identify structures associated to tableaux corresponding to cluster variables. Conjectures are raised associated to the enumeration of tableaux at each rank and the tableaux structure which creates a cluster variable, with the aid of machine learning. 6 authors · Dec 19, 2022
1 Principal subbundles for dimension reduction In this paper we demonstrate how sub-Riemannian geometry can be used for manifold learning and surface reconstruction by combining local linear approximations of a point cloud to obtain lower dimensional bundles. Local approximations obtained by local PCAs are collected into a rank k tangent subbundle on R^d, k<d, which we call a principal subbundle. This determines a sub-Riemannian metric on R^d. We show that sub-Riemannian geodesics with respect to this metric can successfully be applied to a number of important problems, such as: explicit construction of an approximating submanifold M, construction of a representation of the point-cloud in R^k, and computation of distances between observations, taking the learned geometry into account. The reconstruction is guaranteed to equal the true submanifold in the limit case where tangent spaces are estimated exactly. Via simulations, we show that the framework is robust when applied to noisy data. Furthermore, the framework generalizes to observations on an a priori known Riemannian manifold. 5 authors · Jul 6, 2023
- Alcove Walks and GKM Theory for Affine Flags We develop the GKM theory for the torus-equivariant cohomology of the affine flag variety using the combinatorics of alcove walks. Dual to the usual GKM setup, which depicts the orbits of the small torus action on a graph, alcove walks take place in tessellations of Euclidean space. Walks in affine rank two occur on triangulations of the plane, providing a more direct connection to splines used for approximating surfaces. Alcove walks in GKM theory also need not be minimal length, and can instead be randomly generated, giving rise to more flexible implementation. This work reinterprets and recovers classical results in GKM theory on the affine flag variety, generalizing them to both non-minimal and folded alcove walks, all motivated by applications to splines. 2 authors · Mar 21, 2023
- Determinantal ideals of secant varieties Using Hilbert schemes of points, we establish a number of results for a smooth projective variety X in a sufficiently ample embedding. If X is a curve or a surface, we show that the ideals of higher secant varieties are determinantally presented, and we prove the same for the first secant variety if X has arbitrary dimension. This completely settles a conjecture of Eisenbud-Koh-Stillman for curves and partially resolves a conjecture of Sidman-Smith in higher dimensions. If X is a curve or a surface we also prove that the corresponding embedding of the Hilbert scheme of points X^{[d]} into the Grassmannian is projectively normal. Finally, if X is an arbitrary projective scheme in a sufficiently ample embedding, then we demonstrate that its homogeneous ideal is generated by quadrics of rank three, confirming a conjecture of Han-Lee-Moon-Park. Along the way, we check that the Hilbert scheme of three points on a smooth variety is the blow-up of the symmetric product along the big diagonal. 2 authors · Oct 2
- Finsler Metric Clustering in Weighted Projective Spaces This paper develops a hierarchical clustering algorithm for weighted projective spaces P_{q}, utilizing a Finsler metric d_F([z], [w]) and its rational analogue d_{F,Q}([z], [w]) to define distances that preserve the non-Euclidean geometry of these quotient manifolds. Defined via geodesic integrals of a scaling invariant Finsler norm weighted by the grades q = (q_0, q_1, dots, q_n), these metrics satisfy true metric properties including the triangle inequality, overcoming the limitations of the non-metric dissimilarity measure from prior work. 1 authors · May 7
1 Geometry of Sample Spaces In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality. 4 authors · Oct 15, 2020
- First Integrals of Geodesic Flows on Cones In this paper we study the behavior of geodesics on cones over arbitrary C^3-smooth closed Riemannian manifolds. We show that the geodesic flow on such cones admits first integrals whose values uniquely determine almost all geodesics except for cone generatrices. This investigation is inspired by our results on billiards inside cones over manifolds where similar results hold true. 2 authors · Nov 3
- Stable rationality of hypersurfaces in schön affine varieties In recent years, there has been a development in approaching rationality problems through the motivic methods (cf. [Kontsevich--Tschinkel'19], [Nicaise--Shinder'19], [Nicaise--Ottem'21]). This method requires the explicit construction of degeneration families of curves with favorable properties. While the specific construction is generally difficult, [Nicaise--Ottem'22] combines combinatorial methods to construct degeneration families of hypersurfaces in toric varieties and shows the non-stable rationality of a very general hypersurface in projective spaces. In this paper, we extend the result of [Nicaise--Ottem'22] not only for hypersurfaces in algebraic tori but also to those in sch\"{o}n affine varieties. In application, we show the irrationality of certain hypersurfaces in the complex Grassmannian variety Gr(2, n) using the motivic method, which coincides with the result obtained by the same author in the previous research. 1 authors · Feb 12
1 O(n)-invariant Riemannian metrics on SPD matrices Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of covariance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined on the SPD cone, in particular the kernel metrics introduced by Hiai and Petz. The class of kernel metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of stability and completeness. However, it does not contain all the classical O(n)-invariant metrics. Therefore in this work, we investigate super-classes of kernel metrics and we study which key results remain true. We also introduce an additional key result called cometric-stability, a crucial property to implement geodesics with a Hamiltonian formulation. Our method to build intermediate embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of the affine-invariant metric and the formula of the geodesic parallel transport between commuting matrices for the Bures-Wasserstein metric. 2 authors · Sep 13, 2021
- Functorial Manifold Learning We adapt previous research on category theory and topological unsupervised learning to develop a functorial perspective on manifold learning, also known as nonlinear dimensionality reduction. We first characterize manifold learning algorithms as functors that map pseudometric spaces to optimization objectives and that factor through hierarchical clustering functors. We then use this characterization to prove refinement bounds on manifold learning loss functions and construct a hierarchy of manifold learning algorithms based on their equivariants. We express several popular manifold learning algorithms as functors at different levels of this hierarchy, including Metric Multidimensional Scaling, IsoMap, and UMAP. Next, we use interleaving distance to study the stability of a broad class of manifold learning algorithms. We present bounds on how closely the embeddings these algorithms produce from noisy data approximate the embeddings they would learn from noiseless data. Finally, we use our framework to derive a set of novel manifold learning algorithms, which we experimentally demonstrate are competitive with the state of the art. 1 authors · Nov 14, 2020
- Flow Matching on General Geometries We propose Riemannian Flow Matching (RFM), a simple yet powerful framework for training continuous normalizing flows on manifolds. Existing methods for generative modeling on manifolds either require expensive simulation, are inherently unable to scale to high dimensions, or use approximations for limiting quantities that result in biased training objectives. Riemannian Flow Matching bypasses these limitations and offers several advantages over previous approaches: it is simulation-free on simple geometries, does not require divergence computation, and computes its target vector field in closed-form. The key ingredient behind RFM is the construction of a relatively simple premetric for defining target vector fields, which encompasses the existing Euclidean case. To extend to general geometries, we rely on the use of spectral decompositions to efficiently compute premetrics on the fly. Our method achieves state-of-the-art performance on many real-world non-Euclidean datasets, and we demonstrate tractable training on general geometries, including triangular meshes with highly non-trivial curvature and boundaries. 2 authors · Feb 7, 2023
1 Visualizing Riemannian data with Rie-SNE Faithful visualizations of data residing on manifolds must take the underlying geometry into account when producing a flat planar view of the data. In this paper, we extend the classic stochastic neighbor embedding (SNE) algorithm to data on general Riemannian manifolds. We replace standard Gaussian assumptions with Riemannian diffusion counterparts and propose an efficient approximation that only requires access to calculations of Riemannian distances and volumes. We demonstrate that the approach also allows for mapping data from one manifold to another, e.g. from a high-dimensional sphere to a low-dimensional one. 2 authors · Mar 17, 2022
1 Scaling Riemannian Diffusion Models Riemannian diffusion models draw inspiration from standard Euclidean space diffusion models to learn distributions on general manifolds. Unfortunately, the additional geometric complexity renders the diffusion transition term inexpressible in closed form, so prior methods resort to imprecise approximations of the score matching training objective that degrade performance and preclude applications in high dimensions. In this work, we reexamine these approximations and propose several practical improvements. Our key observation is that most relevant manifolds are symmetric spaces, which are much more amenable to computation. By leveraging and combining various ans\"{a}tze, we can quickly compute relevant quantities to high precision. On low dimensional datasets, our correction produces a noticeable improvement, allowing diffusion to compete with other methods. Additionally, we show that our method enables us to scale to high dimensional tasks on nontrivial manifolds. In particular, we model QCD densities on SU(n) lattices and contrastively learned embeddings on high dimensional hyperspheres. 3 authors · Oct 30, 2023
- The generalized roof F(1,2,n): Hodge structures and derived categories We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie groups by a parabolic subgroup, which admit two projective bundle structures. Given a general hyperplane section on such a variety, we consider the zero loci of its pushforwards along the projective bundle structures and we discuss their properties at the level of Hodge structures. In the case of the flag variety F(1,2,n) with its projections to P^{n-1} and G(2, n), we construct a derived embedding of the relevant zero loci by methods based on the study of B-brane categories in the context of a gauged linear sigma model. 4 authors · Oct 20, 2021
- On Loewner energy and curve composition The composition gamma circ eta of Jordan curves gamma and eta in universal Teichm\"uller space is defined through the composition h_gamma circ h_eta of their conformal weldings. We show that whenever gamma and eta are curves of finite Loewner energy I^L, the energy of the composition satisfies $I^L(gamma circ eta) lesssim_K I^L(gamma) + I^L(eta), with an explicit constant in terms of the quasiconformal K of \gamma and \eta. We also study the asymptotic growth rate of the Loewner energy under n self-compositions \gamma^n := \gamma \circ \cdots \circ \gamma, showing limsup_{n rightarrow infty} 1{n}log I^L(gamma^n) lesssim_K 1, again with explicit constant. Our approach is to define a new conformally-covariant rooted welding functional W_h(y), and show W_h(y) \asymp_K I^L(\gamma) when h is a welding of \gamma and y is any root (a point in the domain of h). In the course of our arguments we also give several new expressions for the Loewner energy, including generalized formulas in terms of the Riemann maps f and g for \gamma which hold irrespective of the placement of \gamma on the Riemann sphere, the normalization of f and g, and what disks D, D^c \subset \mathbb{C} serve as domains. An additional corollary is that I^L(\gamma) is bounded above by a constant only depending on the Weil--Petersson distance from \gamma$ to the circle. 2 authors · May 6
2 Manifold Diffusion Fields We present Manifold Diffusion Fields (MDF), an approach to learn generative models of continuous functions defined over Riemannian manifolds. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. Empirical results on several datasets and manifolds show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches. 3 authors · May 24, 2023
- Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method. 5 authors · Apr 1
1 Riemannian Adaptive Optimization Methods Several first order stochastic optimization methods commonly used in the Euclidean domain such as stochastic gradient descent (SGD), accelerated gradient descent or variance reduced methods have already been adapted to certain Riemannian settings. However, some of the most popular of these optimization tools - namely Adam , Adagrad and the more recent Amsgrad - remain to be generalized to Riemannian manifolds. We discuss the difficulty of generalizing such adaptive schemes to the most agnostic Riemannian setting, and then provide algorithms and convergence proofs for geodesically convex objectives in the particular case of a product of Riemannian manifolds, in which adaptivity is implemented across manifolds in the cartesian product. Our generalization is tight in the sense that choosing the Euclidean space as Riemannian manifold yields the same algorithms and regret bounds as those that were already known for the standard algorithms. Experimentally, we show faster convergence and to a lower train loss value for Riemannian adaptive methods over their corresponding baselines on the realistic task of embedding the WordNet taxonomy in the Poincare ball. 2 authors · Oct 1, 2018
- Cusps and Commensurability Classes of Hyperbolic 4-Manifolds There are six orientable, compact, flat 3-manifolds that can occur as cusp cross-sections of hyperbolic 4-manifolds. This paper provides criteria for exactly when a given commensurability class of arithmetic hyperbolic 4-manifolds contains a representative with a given cusp type. In particular, for three of the six cusp types, we provide infinitely many examples of commensurability classes that contain no manifolds with cusps of the given type; no such examples were previously known for any cusp type. 1 authors · Sep 24, 2021
- Calabi-Yau fibrations, simple K-equivalence and mutations A homogeneous roof is a rational homogeneous variety of Picard rank 2 and index r equipped with two different mathbb P^{r-1}-bundle structures. We consider bundles of homogeneous roofs over a smooth projective variety, formulating a relative version of the duality of Calabi--Yau pairs associated to roofs of projective bundles. We discuss how derived equivalence of such pairs can lift to Calabi--Yau fibrations, extending a result of Bridgeland and Maciocia to higher-dimensional cases. We formulate an approach to prove that the DK-conjecture holds for a class of simple K-equivalent maps arising from bundles of roofs. As an example, we propose a pair of eight-dimensional Calabi--Yau varieties fibered in dual Calabi--Yau threefolds, related by a GLSM phase transition, and we prove derived equivalence with the methods above. 1 authors · Jun 11, 2020
- Compact Einstein-type manifolds with parallel Ricci tensor In this paper, we deduce a Bochner-type identity for compact gradient Einstein-type manifolds with boundary. As consequence, we are able to show a rigidity result for Einstein-type manifolds assuming the parallel Ricci curvature condition. Moreover, we provide a condition on the norm of the gradient of the potential function in order to classify such structures. 3 authors · Mar 4, 2024
1 Manifold Learning by Mixture Models of VAEs for Inverse Problems Representing a manifold of very high-dimensional data with generative models has been shown to be computationally efficient in practice. However, this requires that the data manifold admits a global parameterization. In order to represent manifolds of arbitrary topology, we propose to learn a mixture model of variational autoencoders. Here, every encoder-decoder pair represents one chart of a manifold. We propose a loss function for maximum likelihood estimation of the model weights and choose an architecture that provides us the analytical expression of the charts and of their inverses. Once the manifold is learned, we use it for solving inverse problems by minimizing a data fidelity term restricted to the learned manifold. To solve the arising minimization problem we propose a Riemannian gradient descent algorithm on the learned manifold. We demonstrate the performance of our method for low-dimensional toy examples as well as for deblurring and electrical impedance tomography on certain image manifolds. 4 authors · Mar 27, 2023
- Morse theory and Seiberg-Witten moduli spaces of 3-dimensional cobordisms, I Motivated by a variant of Atiyah-Floer conjecture proposed in L2 and its potential generalizations, we study in this article and its sequel as a first step properties of moduli spaces of Seiberg-Witten equations on a 3-dimensional cobordism with cylindrical ends (CCE) \(Y\), perturbed by closed 2-forms of the form \(r*d\ff+w\), where \(r\geq 1\), where \(\ff\) is a harmonic Morse function with certain linear growth at the ends of \(Y\), and \(w\) is a certain closed 2-form. 1 authors · Dec 29, 2024
- Lie Group Decompositions for Equivariant Neural Networks Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals. 2 authors · Oct 17, 2023
1 A geometric framework for asymptotic inference of principal subspaces in PCA In this article, we develop an asymptotic method for constructing confidence regions for the set of all linear subspaces arising from PCA, from which we derive hypothesis tests on this set. Our method is based on the geometry of Riemannian manifolds with which some sets of linear subspaces are endowed. 2 authors · Sep 5, 2022
- Unsupervised Manifold Linearizing and Clustering We consider the problem of simultaneously clustering and learning a linear representation of data lying close to a union of low-dimensional manifolds, a fundamental task in machine learning and computer vision. When the manifolds are assumed to be linear subspaces, this reduces to the classical problem of subspace clustering, which has been studied extensively over the past two decades. Unfortunately, many real-world datasets such as natural images can not be well approximated by linear subspaces. On the other hand, numerous works have attempted to learn an appropriate transformation of the data, such that data is mapped from a union of general non-linear manifolds to a union of linear subspaces (with points from the same manifold being mapped to the same subspace). However, many existing works have limitations such as assuming knowledge of the membership of samples to clusters, requiring high sampling density, or being shown theoretically to learn trivial representations. In this paper, we propose to optimize the Maximal Coding Rate Reduction metric with respect to both the data representation and a novel doubly stochastic cluster membership, inspired by state-of-the-art subspace clustering results. We give a parameterization of such a representation and membership, allowing efficient mini-batching and one-shot initialization. Experiments on CIFAR-10, -20, -100, and TinyImageNet-200 datasets show that the proposed method is much more accurate and scalable than state-of-the-art deep clustering methods, and further learns a latent linear representation of the data. 6 authors · Jan 4, 2023
1 Riemannian Score-Based Generative Modelling Score-based generative models (SGMs) are a powerful class of generative models that exhibit remarkable empirical performance. Score-based generative modelling (SGM) consists of a ``noising'' stage, whereby a diffusion is used to gradually add Gaussian noise to data, and a generative model, which entails a ``denoising'' process defined by approximating the time-reversal of the diffusion. Existing SGMs assume that data is supported on a Euclidean space, i.e. a manifold with flat geometry. In many domains such as robotics, geoscience or protein modelling, data is often naturally described by distributions living on Riemannian manifolds and current SGM techniques are not appropriate. We introduce here Riemannian Score-based Generative Models (RSGMs), a class of generative models extending SGMs to Riemannian manifolds. We demonstrate our approach on a variety of manifolds, and in particular with earth and climate science spherical data. 6 authors · Feb 6, 2022
1 Geometry on the Wasserstein space over a compact Riemannian manifold We will revisit the intrinsic differential geometry of the Wasserstein space over a Riemannian manifold, due to a series of papers by Otto, Villani, Lott, Ambrosio, Gigli, Savar\'e and so on. 2 authors · Apr 2, 2021
- Open Gromov-Witten theory on Calabi-Yau three-folds I We propose a general theory of the Open Gromov-Witten invariant on Calabi-Yau three-folds. We introduce the moduli space of multi-curves and show how it leads to invariants. Our construction is based on an idea of Witten. In the special case that each connected component of the Lagrangian submanifold has the rational homology of a sphere we define rational numbers F_{g,h} for each genus g and h boundary components. 1 authors · Jul 29, 2009
- Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes Learning the distribution of data on Riemannian manifolds is crucial for modeling data from non-Euclidean space, which is required by many applications in diverse scientific fields. Yet, existing generative models on manifolds suffer from expensive divergence computation or rely on approximations of heat kernel. These limitations restrict their applicability to simple geometries and hinder scalability to high dimensions. In this work, we introduce the Riemannian Diffusion Mixture, a principled framework for building a generative diffusion process on manifolds. Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes derived on general manifolds without requiring heat kernel estimations. We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points that guides the process toward the data distribution. We further propose a scalable training objective for learning the mixture process that readily applies to general manifolds. Our method achieves superior performance on diverse manifolds with dramatically reduced number of in-training simulation steps for general manifolds. 2 authors · Oct 11, 2023
- A Lie Group Approach to Riemannian Batch Normalization Manifold-valued measurements exist in numerous applications within computer vision and machine learning. Recent studies have extended Deep Neural Networks (DNNs) to manifolds, and concomitantly, normalization techniques have also been adapted to several manifolds, referred to as Riemannian normalization. Nonetheless, most of the existing Riemannian normalization methods have been derived in an ad hoc manner and only apply to specific manifolds. This paper establishes a unified framework for Riemannian Batch Normalization (RBN) techniques on Lie groups. Our framework offers the theoretical guarantee of controlling both the Riemannian mean and variance. Empirically, we focus on Symmetric Positive Definite (SPD) manifolds, which possess three distinct types of Lie group structures. Using the deformation concept, we generalize the existing Lie groups on SPD manifolds into three families of parameterized Lie groups. Specific normalization layers induced by these Lie groups are then proposed for SPD neural networks. We demonstrate the effectiveness of our approach through three sets of experiments: radar recognition, human action recognition, and electroencephalography (EEG) classification. The code is available at https://github.com/GitZH-Chen/LieBN.git. 4 authors · Mar 17, 2024
1 A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets. Institut National de Recherche en Informatique et en Automatique · Jun 19, 2023
- Homoclinic Floer homology via direct limits Let (M omega) be a two dimensional symplectic manifold, phi: M to M a symplectomorphism with hyperbolic fixed point x and transversely intersecting stable and unstable manifolds W^s(phi, x) cap W^u(phi, x)=:H(phi, x). The intersection points are called homoclinic points, and the stable and unstable manifold are in this situation Lagrangian submanifolds. For this Lagrangian intersection problem with its infinite number of intersection points and wild oscillation behavior, we first define a Floer homology generated by finite sets of so-called contractible homoclinic points. This generalizes very significantly the Floer homologies generated by (semi)primary points defined by us in earlier works. Nevertheless these Floer homologies only consider quite `local' aspects of W^s(phi, x) cap W^u(phi, x) since their generator sets are finite, but the number of all contractible homoclinic points is infinite. To overcome this issue, we construct a direct limit of these `local' homoclinic Floer homologies over suitable index sets. These direct limits thus accumulate the information gathered by the finitely generated local' homoclinic Floer homologies. 1 authors · Feb 19, 2024
- Extrinsic systole of Seifert surfaces and distortion of knots In 1983, Gromov introduced the notion of distortion of a knot, and asked if there are knots with arbitrarily large distortion. In 2011, Pardon proved that the distortion of T_{p,q} is at least min{p,q} up to a constant factor. We prove that the distortion of T_{p, p+1}# K is at least p up to a constant, independent of K. We also prove that any embedding of a minimal genus Seifert surface for T_{p,p+1}# K in R^3 has small extrinsic systole, in the sense that it contains a non-contractible loop with small R^3-diameter relative to the length of the knot. These results are related to combinatorial properties of the monodromy map associated to torus knots. 1 authors · Oct 1
- Adiabatic Solutions of the Haydys-Witten Equations and Symplectic Khovanov Homology An influential conjecture by Witten states that there is an instanton Floer homology of four-manifolds with corners that in certain situations is isomorphic to Khovanov homology of a given knot K. The Floer chain complex is generated by Nahm pole solutions of the Kapustin-Witten equations on R^3 times R^+_y with an additional monopole-like singular behaviour along the knot K inside the three-dimensional boundary at y=0. The Floer differential is given by counting solutions of the Haydys-Witten equations that interpolate between Kapustin-Witten solutions along an additional flow direction R_s. This article investigates solutions of a decoupled version of the Kapustin-Witten and Haydys-Witten equations on R_s times R^3 times R^+_y, which in contrast to the full equations exhibit a Hermitian Yang-Mills structure and can be viewed as a lift of the extended Bogomolny equations (EBE) from three to five dimensions. Inspired by Gaiotto-Witten's approach of adiabatically braiding EBE-solutions to obtain generators of the Floer homology, we propose that there is an equivalence between adiabatic solutions of the decoupled Haydys-Witten equations and non-vertical paths in the moduli space of EBE-solutions fibered over the space of monopole positions. Moreover, we argue that the Grothendieck-Springer resolution of the Lie algebra of the gauge group provides a finite-dimensional model of this moduli space of monopole solutions. These considerations suggest an intriguing similarity between Haydys-Witten instanton Floer homology and symplectic Khovanov homology and provide a novel approach towards a proof of Witten's gauge-theoretic interpretations of Khovanov homology. 1 authors · Jan 2
- An extended Kodaira Spencer functional This note is about an extension of the Kodaira-Spencer functional to Calabi-Yau manifolds of any dimension. 1 authors · Jun 16, 2021
- Topological Singularity Detection at Multiple Scales The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the 'manifoldness' of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data. 2 authors · Sep 30, 2022
- Specialization maps for Scholze's category of diamonds We introduce the specialization map in Scholzes theory of diamonds. We consider v-sheaves that behave like formal schemes and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an etale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified p-adic Beilinson--Drinfeld Grassmannians are kimberlites with finiteness and normality properties. 1 authors · Dec 10, 2020
- Hyperbolic Diffusion Embedding and Distance for Hierarchical Representation Learning Finding meaningful representations and distances of hierarchical data is important in many fields. This paper presents a new method for hierarchical data embedding and distance. Our method relies on combining diffusion geometry, a central approach to manifold learning, and hyperbolic geometry. Specifically, using diffusion geometry, we build multi-scale densities on the data, aimed to reveal their hierarchical structure, and then embed them into a product of hyperbolic spaces. We show theoretically that our embedding and distance recover the underlying hierarchical structure. In addition, we demonstrate the efficacy of the proposed method and its advantages compared to existing methods on graph embedding benchmarks and hierarchical datasets. 4 authors · May 30, 2023
2 All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra For any given dimension d, all reflexive d-polytopes can be found (in principle) as subpolytopes of a number of maximal polyhedra that are defined in terms of (d+1)-tuples of integers (weights), or combinations of k-tuples of weights with k<d+1. We present the results of a complete classification of sextuples of weights pertaining to the construction of all reflexive polytopes in five dimensions. We find 322 383 760 930 such weight systems. 185 269 499 015 of them give rise directly to reflexive polytopes and thereby to mirror pairs of Calabi-Yau fourfolds. These lead to 532 600 483 distinct sets of Hodge numbers. 2 authors · Aug 7, 2018
- Automorphisms and subdivisions of Helly graphs We study Helly graphs of finite combinatorial dimension, i.e. whose injective hull is finite-dimensional. We describe very simple fine simplicial subdivisions of the injective hull of a Helly graph, following work of Lang. We also give a very explicit simplicial model of the injective hull of a Helly graphs, in terms of cliques which are intersections of balls. We use these subdivisions to prove that any automorphism of a Helly graph with finite combinatorial dimension is either elliptic or hyperbolic. Moreover, every such hyperbolic automorphism has an axis in an appropriate Helly subdivision, and its translation length is rational with uniformly bounded denominator. 1 authors · Jul 1, 2023
- Input Convex Gradient Networks The gradients of convex functions are expressive models of non-trivial vector fields. For example, Brenier's theorem yields that the optimal transport map between any two measures on Euclidean space under the squared distance is realized as a convex gradient, which is a key insight used in recent generative flow models. In this paper, we study how to model convex gradients by integrating a Jacobian-vector product parameterized by a neural network, which we call the Input Convex Gradient Network (ICGN). We theoretically study ICGNs and compare them to taking the gradient of an Input-Convex Neural Network (ICNN), empirically demonstrating that a single layer ICGN can fit a toy example better than a single layer ICNN. Lastly, we explore extensions to deeper networks and connections to constructions from Riemannian geometry. 3 authors · Nov 23, 2021
- On κ-solutions and canonical neighborhoods in 4d Ricci flow We introduce a classification conjecture for kappa-solutions in 4d Ricci flow. Our conjectured list includes known examples from the literature, but also a new 1-parameter family of Z_2^2times O_3-symmetric bubble-sheet ovals that we construct. We observe that some special cases of the conjecture follow from recent results in the literature. We also introduce a stronger variant of the classification conjecture for ancient asymptotically cylindrical 4d Ricci flows, which does not assume smoothness and nonnegative curvature operator a priori. Assuming this stronger variant holds true, we establish a canonical neighborhood theorem for 4d Ricci flow through cylindrical singularities, which shares some elements in common with Perelman's canonical neighborhood theorem for 3d Ricci flow as well as the mean-convex neighborhood theorem for mean curvature flow through neck-singularities. Finally, we argue that quotient-necks lead to new phenomena, and sketch an example of non-uniqueness for 4d Ricci flow through singularities. 1 authors · Aug 2, 2023
- Classifying Clustering Schemes Many clustering schemes are defined by optimizing an objective function defined on the partitions of the underlying set of a finite metric space. In this paper, we construct a framework for studying what happens when we instead impose various structural conditions on the clustering schemes, under the general heading of functoriality. Functoriality refers to the idea that one should be able to compare the results of clustering algorithms as one varies the data set, for example by adding points or by applying functions to it. We show that within this framework, one can prove a theorems analogous to one of J. Kleinberg, in which for example one obtains an existence and uniqueness theorem instead of a non-existence result. We obtain a full classification of all clustering schemes satisfying a condition we refer to as excisiveness. The classification can be changed by varying the notion of maps of finite metric spaces. The conditions occur naturally when one considers clustering as the statistical version of the geometric notion of connected components. By varying the degree of functoriality that one requires from the schemes it is possible to construct richer families of clustering schemes that exhibit sensitivity to density. 2 authors · Nov 23, 2010
- Flat matrix models for quantum permutation groups We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful. 2 authors · Feb 14, 2016
- Sheaf Neural Networks with Connection Laplacians A Sheaf Neural Network (SNN) is a type of Graph Neural Network (GNN) that operates on a sheaf, an object that equips a graph with vector spaces over its nodes and edges and linear maps between these spaces. SNNs have been shown to have useful theoretical properties that help tackle issues arising from heterophily and over-smoothing. One complication intrinsic to these models is finding a good sheaf for the task to be solved. Previous works proposed two diametrically opposed approaches: manually constructing the sheaf based on domain knowledge and learning the sheaf end-to-end using gradient-based methods. However, domain knowledge is often insufficient, while learning a sheaf could lead to overfitting and significant computational overhead. In this work, we propose a novel way of computing sheaves drawing inspiration from Riemannian geometry: we leverage the manifold assumption to compute manifold-and-graph-aware orthogonal maps, which optimally align the tangent spaces of neighbouring data points. We show that this approach achieves promising results with less computational overhead when compared to previous SNN models. Overall, this work provides an interesting connection between algebraic topology and differential geometry, and we hope that it will spark future research in this direction. 6 authors · Jun 17, 2022
- On weakly Einstein Kähler surfaces Riemannian four-manifolds in which the triple contraction of the curvature tensor against itself yields a functional multiple of the metric are called weakly Einstein. We focus on weakly Einstein K\"ahler surfaces. We provide several conditions characterizing those K\"ahler surfaces which are weakly Einstein, classify weakly Einstein K\"ahler surfaces having some specific additional properties, and construct new examples. 4 authors · Dec 31, 2024
- Geometric construction of Schur algebras We provide the geometric construction of a series of generalized Schur algebras of any type via Borel-Moore homologies and equivariant K-groups of generalized Steinberg varieties. As applications, we obtain a Schur algebra analogue of the local geometric Langlands correspondence of any type, provide an equivariant K-theoretic realization of quasi-split imathquantum groups of affine type AIII, and establish a geometric Howe duality for affine (imath-)quantum groups. 3 authors · Nov 27, 2024
- An addendum on the Mathieu Conjecture for SU(N), Sp(N) and G_2 In this paper, we sharpen results obtained by the author in 2023. The new results reduce the Mathieu Conjecture on SU(N) (formulated for all compact connected Lie groups by O. Mathieu in 1997) to a conjecture involving only functions on R^ntimes (S^1)^m with n,m non-negative integers instead of involving functions on R^ntimes (S^1setminus{1})^m. The proofs rely on a more recent work of the author (2024) and a specific KAK decomposition. Finally, with these results we can also improve the results on the groups Sp(N) and G_2 in the latter paper, since they relied on the construction introduced in the 2023 paper. 1 authors · Apr 2
- An open-closed Deligne-Mumford field theory associated to a Lagrangian submanifold Let L subset X be a compact embedded Lagrangian in a compact symplectic manifold. We present the moduli spaces of holomorphic maps of arbitrary genus with boundary on L as a global Kuranishi chart, generalising the work of Abouzaid-McLean-Smith and Hirschi-Swaminathan. We use this to define an open-closed Deligne-Mumford theory whose open genus zero part is the Fukaya A_infty algebra associated to L, and whose closed part gives the Gromov--Witten theory of X. Combined with results of Costello, this has applications in obtaining Gromov--Witten invariants from the Fukaya category. 2 authors · Jan 8
- Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to Deep Learning Riemannian submanifold optimization with momentum is computationally challenging because, to ensure that the iterates remain on the submanifold, we often need to solve difficult differential equations. Here, we simplify such difficulties for a class of structured symmetric positive-definite matrices with the affine-invariant metric. We do so by proposing a generalized version of the Riemannian normal coordinates that dynamically orthonormalizes the metric and locally converts the problem into an unconstrained problem in the Euclidean space. We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free 2^nd-order optimizers for deep learning in low precision settings. Code: https://github.com/yorkerlin/StructuredNGD-DL 6 authors · Feb 19, 2023
- Einstein metrics on aligned homogeneous spaces with two factors Given two homogeneous spaces of the form G_1/K and G_2/K, where G_1 and G_2 are compact simple Lie groups, we study the existence problem for G_1xG_2-invariant Einstein metrics on the homogeneous space M=G_1xG_2/K. For the large subclass C of spaces having three pairwise inequivalent isotropy irreducible summands (12 infinite families and 70 sporadic examples), we obtain that existence is equivalent to the existence of a real root for certain quartic polynomial depending on the dimensions and two Killing constants, which allows a full classification and the possibility to weigh the existence and non-existence pieces of C. 2 authors · Aug 1, 2024
- Subspace power method for symmetric tensor decomposition We introduce the Subspace Power Method (SPM) for calculating the CP decomposition of low-rank real symmetric tensors. This algorithm calculates one new CP component at a time, alternating between applying the shifted symmetric higher-order power method (SS-HOPM) to a certain modified tensor, constructed from a matrix flattening of the original tensor; and using appropriate deflation steps. We obtain rigorous guarantees for SPM regarding convergence and global optima for input tensors of dimension d and order m of CP rank up to O(d^{lfloor m/2rfloor}), via results in classical algebraic geometry and optimization theory. As a by-product of our analysis we prove that SS-HOPM converges unconditionally, settling a conjecture in [Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM Journal on Matrix Analysis and Applications 32(4), 1095-1124 (2011)]. We present numerical experiments which demonstrate that SPM is efficient and robust to noise, being up to one order of magnitude faster than state-of-the-art CP decomposition algorithms in certain experiments. Furthermore, prior knowledge of the CP rank is not required by SPM. 2 authors · Dec 9, 2019
- On the Topological Complexity of Maps We define and develop a homotopy invariant notion for the topological complexity of a map f:X to Y, denoted TC(f), that interacts with TC(X) and TC(Y) in the same way cat(f) interacts with cat(X) and cat(Y). Furthermore, TC(f) and cat(f) satisfy the same inequalities as TC(X) and cat(X). We compare it to other invariants defined in the papers [15,16,17,18,20]. We apply TC(f) to studying group homomorphisms f:Hto G. 1 authors · Nov 20, 2020
- The Minkowski Billiard Characterization of the EHZ-capacity of Convex Lagrangian Products We rigorously state the connection between the EHZ-capacity of convex Lagrangian products Ktimes TsubsetR^ntimesR^n and the minimal length of closed (K,T)-Minkowski billiard trajectories. This connection was made explicit for the first time by Artstein-Avidan and Ostrover under the assumption of smoothness and strict convexity of both K and T. We prove this connection in its full generality, i.e., without requiring any conditions on the convex bodies K and T. This prepares the computation of the EHZ-capacity of convex Lagrangian products of two convex polytopes by using discrete computational methods. 1 authors · Mar 3, 2022
- Manifoldron: Direct Space Partition via Manifold Discovery A neural network with the widely-used ReLU activation has been shown to partition the sample space into many convex polytopes for prediction. However, the parameterized way a neural network and other machine learning models use to partition the space has imperfections, e.g., the compromised interpretability for complex models, the inflexibility in decision boundary construction due to the generic character of the model, and the risk of being trapped into shortcut solutions. In contrast, although the non-parameterized models can adorably avoid or downplay these issues, they are usually insufficiently powerful either due to over-simplification or the failure to accommodate the manifold structures of data. In this context, we first propose a new type of machine learning models referred to as Manifoldron that directly derives decision boundaries from data and partitions the space via manifold structure discovery. Then, we systematically analyze the key characteristics of the Manifoldron such as manifold characterization capability and its link to neural networks. The experimental results on 4 synthetic examples, 20 public benchmark datasets, and 1 real-world application demonstrate that the proposed Manifoldron performs competitively compared to the mainstream machine learning models. We have shared our code in https://github.com/wdayang/Manifoldron for free download and evaluation. 9 authors · Jan 13, 2022
- Efficient Graph Field Integrators Meet Point Clouds We present two new classes of algorithms for efficient field integration on graphs encoding point clouds. The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds. Both can be viewed as providing the functionality of Fast Multipole Methods (FMMs), which have had a tremendous impact on efficient integration, but for non-Euclidean spaces. We focus on geometries induced by distributions of walk lengths between points (e.g., shortest-path distance). We provide an extensive theoretical analysis of our algorithms, obtaining new results in structural graph theory as a byproduct. We also perform exhaustive empirical evaluation, including on-surface interpolation for rigid and deformable objects (particularly for mesh-dynamics modeling), Wasserstein distance computations for point clouds, and the Gromov-Wasserstein variant. 16 authors · Feb 2, 2023
- The Numerical Stability of Hyperbolic Representation Learning Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM. 4 authors · Oct 31, 2022
- Volumes of Nullhomotopies in Nilpotent Spaces The Shadowing Principle of Manin has proved a valuable tool for addressing questions of quantitative topology raised by Gromov in the late 1900s. The principle informally provides a way for bounded algebraic maps between differential graded algebras to be translated into nearby genuine maps between their geometric realizations. We extend this principle to finite towers of principal K(G,n) fibrations, and in particular apply this construction to nilpotent spaces. As a specific application of the extended principle, we provide upper bounds on the asymptotic behavior of volumes of nullhomotopies of Lipschitz maps into nilpotent spaces. We further refine these bounds in the case when c = 1 to nearly meet those of the simply connected setting. We similarly refine these bounds in the event the target space is coformal, and demonstrate that the bounds in this setting are nearly sharp. 1 authors · Sep 30
- Elliptic genera of two-dimensional N=2 gauge theories with rank-one gauge groups We compute the elliptic genera of two-dimensional N=(2,2) and N=(0,2) gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi-Yau, N=(2,2) SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2) model. 4 authors · May 2, 2013
- Implicit Gaussian process representation of vector fields over arbitrary latent manifolds Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications. 9 authors · Sep 28, 2023
2 Geodesic Prototype Matching via Diffusion Maps for Interpretable Fine-Grained Recognition Nonlinear manifolds are widespread in deep visual features, where Euclidean distances often fail to capture true similarity. This limitation becomes particularly severe in prototype-based interpretable fine-grained recognition, where subtle semantic distinctions are essential. To address this challenge, we propose a novel paradigm for prototype-based recognition that anchors similarity within the intrinsic geometry of deep features. Specifically, we distill the latent manifold structure of each class into a diffusion space and introduce a differentiable Nystr\"om interpolation, making the geometry accessible to both unseen samples and learnable prototypes. To ensure efficiency, we employ compact per-class landmark sets with periodic updates. This design keeps the embedding aligned with the evolving backbone, enabling fast and scalable inference. Extensive experiments on the CUB-200-2011 and Stanford Cars datasets show that our GeoProto framework produces prototypes focusing on semantically aligned parts, significantly outperforming Euclidean prototype networks. 7 authors · Sep 21
- Surface Patches with Rounded Corners We analyze surface patches with a corner that is rounded in the sense that the partial derivatives at that point are antiparallel. Sufficient conditions for G^1 smoothness are given, which, up to a certain degenerate case, are also necessary. Further, we investigate curvature integrability and present examples 2 authors · Mar 23, 2022
1 Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs Collections of probability distributions arise in a variety of applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions can be defined over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of distributions over such general domains. To this end, we propose the intrinsic slicing construction that yields a novel class of Wasserstein distances on manifolds and graphs. These distances are Hilbert embeddable, allowing us to reduce the distribution collection comparison problem to a more familiar mean testing problem in a Hilbert space. We provide two testing procedures one based on resampling and another on combining p-values from coordinate-wise tests. Our experiments in various synthetic and real data settings show that the resulting tests are powerful and the p-values are well-calibrated. 2 authors · Oct 28, 2020
2 Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the algebraic transformations describing symmetries of physical systems. Extracting knowledge from such non-Euclidean data necessitates a broader mathematical perspective. Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures. Its goal: generalizing classical methods to unconventional data types with geometry, topology, and algebra. In this review, we provide an accessible gateway to this fast-growing field and propose a graphical taxonomy that integrates recent advances into an intuitive unified framework. We subsequently extract insights into current challenges and highlight exciting opportunities for future development in this field. 9 authors · Jul 12, 2024
1 UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning. 3 authors · Feb 9, 2018
- Fast hyperboloid decision tree algorithms Hyperbolic geometry is gaining traction in machine learning for its effectiveness at capturing hierarchical structures in real-world data. Hyperbolic spaces, where neighborhoods grow exponentially, offer substantial advantages and consistently deliver state-of-the-art results across diverse applications. However, hyperbolic classifiers often grapple with computational challenges. Methods reliant on Riemannian optimization frequently exhibit sluggishness, stemming from the increased computational demands of operations on Riemannian manifolds. In response to these challenges, we present hyperDT, a novel extension of decision tree algorithms into hyperbolic space. Crucially, hyperDT eliminates the need for computationally intensive Riemannian optimization, numerically unstable exponential and logarithmic maps, or pairwise comparisons between points by leveraging inner products to adapt Euclidean decision tree algorithms to hyperbolic space. Our approach is conceptually straightforward and maintains constant-time decision complexity while mitigating the scalability issues inherent in high-dimensional Euclidean spaces. Building upon hyperDT we introduce hyperRF, a hyperbolic random forest model. Extensive benchmarking across diverse datasets underscores the superior performance of these models, providing a swift, precise, accurate, and user-friendly toolkit for hyperbolic data analysis. 4 authors · Oct 20, 2023
- New counterexamples to the birational Torelli theorem for Calabi--Yau manifolds We produce counterexamples to the birational Torelli theorem for Calabi-Yau manifolds in arbitrarily high dimension: this is done by exhibiting a series of non birational pairs of Calabi-Yau (n^2-1)-folds which, for n geq 2 even, admit an isometry between their middle cohomologies. These varieties also satisfy an mathbb L-equivalence relation in the Grothendieck ring of varieties, i.e. the difference of their classes annihilates a power of the class of the affine line. We state this last property for a broader class of Calabi-Yau pairs, namely all those which are realized as pushforwards of a general (1,1)-section on a homogeneous roof in the sense of Kanemitsu, along its two extremal contractions. 1 authors · Nov 7, 2022
- Immersions of complexes of groups Given a complex of groups, we construct a new class of complex of groups that records its local data and offer a functorial perspective on the statement that complexes of groups are locally developable. We also construct a new notion of an immersion of complexes of groups and establish that a locally isometric immersion of a complex of groups into a non-positively curved complex of groups is pi_1-injective. Furthermore, the domain complex of groups is developable and the induced map on geometric realizations of developments is an isometric embedding. 1 authors · Oct 1
- Painlevé Kernels and Surface Defects at Strong Coupling It is well established that the spectral analysis of canonically quantized four-dimensional Seiberg-Witten curves can be systematically studied via the Nekrasov-Shatashvili functions. In this paper, we explore another aspect of the relation between N=2 supersymmetric gauge theories in four dimensions and operator theory. Specifically, we study an example of an integral operator associated with Painlev\'e equations and whose spectral traces are related to correlation functions of the 2d Ising model. This operator does not correspond to a canonically quantized Seiberg-Witten curve, but its kernel can nevertheless be interpreted as the density matrix of an ideal Fermi gas. Adopting the approach of Tracy and Widom, we provide an explicit expression for its eigenfunctions via an O(2) matrix model. We then show that these eigenfunctions are computed by surface defects in SU(2) super Yang-Mills in the self-dual phase of the Omega-background. Our result also yields a strong coupling expression for such defects which resums the instanton expansion. Even though we focus on one concrete example, we expect these results to hold for a larger class of operators arising in the context of isomonodromic deformation equations. 2 authors · Oct 13, 2023
1 Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data. Institut National de Recherche en Informatique et en Automatique · Jun 6, 2023
26 Idempotent Generative Network We propose a new approach for generative modeling based on training a neural network to be idempotent. An idempotent operator is one that can be applied sequentially without changing the result beyond the initial application, namely f(f(z))=f(z). The proposed model f is trained to map a source distribution (e.g, Gaussian noise) to a target distribution (e.g. realistic images) using the following objectives: (1) Instances from the target distribution should map to themselves, namely f(x)=x. We define the target manifold as the set of all instances that f maps to themselves. (2) Instances that form the source distribution should map onto the defined target manifold. This is achieved by optimizing the idempotence term, f(f(z))=f(z) which encourages the range of f(z) to be on the target manifold. Under ideal assumptions such a process provably converges to the target distribution. This strategy results in a model capable of generating an output in one step, maintaining a consistent latent space, while also allowing sequential applications for refinement. Additionally, we find that by processing inputs from both target and source distributions, the model adeptly projects corrupted or modified data back to the target manifold. This work is a first step towards a ``global projector'' that enables projecting any input into a target data distribution. 6 authors · Nov 2, 2023 4
- Decentralized Riemannian Conjugate Gradient Method on the Stiefel Manifold The conjugate gradient method is a crucial first-order optimization method that generally converges faster than the steepest descent method, and its computational cost is much lower than that of second-order methods. However, while various types of conjugate gradient methods have been studied in Euclidean spaces and on Riemannian manifolds, there is little study for those in distributed scenarios. This paper proposes a decentralized Riemannian conjugate gradient descent (DRCGD) method that aims at minimizing a global function over the Stiefel manifold. The optimization problem is distributed among a network of agents, where each agent is associated with a local function, and the communication between agents occurs over an undirected connected graph. Since the Stiefel manifold is a non-convex set, a global function is represented as a finite sum of possibly non-convex (but smooth) local functions. The proposed method is free from expensive Riemannian geometric operations such as retractions, exponential maps, and vector transports, thereby reducing the computational complexity required by each agent. To the best of our knowledge, DRCGD is the first decentralized Riemannian conjugate gradient algorithm to achieve global convergence over the Stiefel manifold. 7 authors · Aug 21, 2023
- Regularity of shadows and the geometry of the singular set associated to a Monge-Ampere equation Illuminating the surface of a convex body with parallel beams of light in a given direction generates a shadow region. We prove sharp regularity results for the boundary of this shadow in every direction of illumination. Moreover, techniques are developed for investigating the regularity of the region generated by orthogonally projecting a convex set onto another. As an application we study the geometry and Hausdorff dimension of the singular set corresponding to a Monge-Ampere equation. 2 authors · Nov 22, 2013
- Invariant subspaces for finite index shifts in Hardy spaces and the invariant subspace problem for finite defect operators Let mathbb H be the finite direct sums of H^2(mathbb D). In this paper, we give a characterization of the closed subspaces of mathbb H which are invariant under the shift, thus obtaining a concrete Beurling-type theorem for the finite index shift. This characterization presents any such a subspace as the finite intersection, up to an inner function, of pre-images of a closed shift-invariant subspace of H^2(mathbb D) under ``determinantal operators'' from mathbb H to H^2(mathbb D), that is, continuous linear operators which intertwine the shifts and appear as determinants of matrices with entries given by bounded holomorphic functions. With simple algebraic manipulations we provide a direct proof that every invariant closed subspace of codimension at least two sits into a non-trivial closed invariant subspace. As a consequence every bounded linear operator with finite defect has a nontrivial closed invariant subspace. 2 authors · Nov 4, 2024
- Measuring the Intrinsic Dimension of Objective Landscapes Many recently trained neural networks employ large numbers of parameters to achieve good performance. One may intuitively use the number of parameters required as a rough gauge of the difficulty of a problem. But how accurate are such notions? How many parameters are really needed? In this paper we attempt to answer this question by training networks not in their native parameter space, but instead in a smaller, randomly oriented subspace. We slowly increase the dimension of this subspace, note at which dimension solutions first appear, and define this to be the intrinsic dimension of the objective landscape. The approach is simple to implement, computationally tractable, and produces several suggestive conclusions. Many problems have smaller intrinsic dimensions than one might suspect, and the intrinsic dimension for a given dataset varies little across a family of models with vastly different sizes. This latter result has the profound implication that once a parameter space is large enough to solve a problem, extra parameters serve directly to increase the dimensionality of the solution manifold. Intrinsic dimension allows some quantitative comparison of problem difficulty across supervised, reinforcement, and other types of learning where we conclude, for example, that solving the inverted pendulum problem is 100 times easier than classifying digits from MNIST, and playing Atari Pong from pixels is about as hard as classifying CIFAR-10. In addition to providing new cartography of the objective landscapes wandered by parameterized models, the method is a simple technique for constructively obtaining an upper bound on the minimum description length of a solution. A byproduct of this construction is a simple approach for compressing networks, in some cases by more than 100 times. 4 authors · Apr 24, 2018
- Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation We present Symphony, an E(3)-equivariant autoregressive generative model for 3D molecular geometries that iteratively builds a molecule from molecular fragments. Existing autoregressive models such as G-SchNet and G-SphereNet for molecules utilize rotationally invariant features to respect the 3D symmetries of molecules. In contrast, Symphony uses message-passing with higher-degree E(3)-equivariant features. This allows a novel representation of probability distributions via spherical harmonic signals to efficiently model the 3D geometry of molecules. We show that Symphony is able to accurately generate small molecules from the QM9 dataset, outperforming existing autoregressive models and approaching the performance of diffusion models. 4 authors · Nov 27, 2023
- Effects of Data Geometry in Early Deep Learning Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset. 2 authors · Dec 29, 2022
- Graded Contact Geometry and the AKSZ Formalism The AKSZ formalism is a construction of topological field theories where the target spaces are differential graded symplectic manifolds. In this paper, we describe an analogue of the AKSZ formalism where the target spaces are differential graded contact manifolds. We show that the space of fields inherits a weak contact structure, and we construct a solution to the analogue of the classical master equation, defined via the Jacobi bracket. In the n=1 case, we recover the Jacobi sigma model, and in the n=2 case, we obtain three-dimensional topological field theories associated to Courant-Jacobi algebroids. 3 authors · Nov 25
- Clifford Group Equivariant Simplicial Message Passing Networks We introduce Clifford Group Equivariant Simplicial Message Passing Networks, a method for steerable E(n)-equivariant message passing on simplicial complexes. Our method integrates the expressivity of Clifford group-equivariant layers with simplicial message passing, which is topologically more intricate than regular graph message passing. Clifford algebras include higher-order objects such as bivectors and trivectors, which express geometric features (e.g., areas, volumes) derived from vectors. Using this knowledge, we represent simplex features through geometric products of their vertices. To achieve efficient simplicial message passing, we share the parameters of the message network across different dimensions. Additionally, we restrict the final message to an aggregation of the incoming messages from different dimensions, leading to what we term shared simplicial message passing. Experimental results show that our method is able to outperform both equivariant and simplicial graph neural networks on a variety of geometric tasks. 4 authors · Feb 15, 2024
- Optimal piecewise linear data compression for solutions of parametrized partial differential equations Model order reduction has been extensively studied over the last two decades. Projection-based methods such as the Proper Orthogonal Decomposition and the Reduced Basis Method enjoy the important advantages of Galerkin methods in the derivation of the reduced problem, but are limited to linear data compression for which the reduced solution is sought as a linear combination of spatial modes. Nonlinear data compression must be used when the solution manifold is not embedded in a low-dimensional subspace. Early methods involve piecewise linear data compression, by constructing a dictionary of reduced-order models tailored to a partition of the solution manifold. In this work, we introduce the concept of optimal partition of the solution manifold in terms of normalized Kolmogorov widths, and prove that the optimal partitions can be found by means of a representative-based clustering algorithm using the sine dissimilarity measure on the solution manifold. 4 authors · Aug 27, 2021
1 Poincaré Embeddings for Learning Hierarchical Representations Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincar\'e ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincar\'e embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability. 2 authors · May 22, 2017
- Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler State space models (SSM) have been widely applied for the analysis and visualization of large sequential datasets. Sequential Monte Carlo (SMC) is a very popular particle-based method to sample latent states from intractable posteriors. However, SSM is significantly influenced by the choice of the proposal. Recently Hamiltonian Monte Carlo (HMC) sampling has shown success in many practical problems. In this paper, we propose an SMC augmented by HMC (HSMC) for inference and model learning of nonlinear SSM, which can exempt us from learning proposals and reduce the model complexity significantly. Based on the measure preserving property of HMC, the particles directly generated by transition function can approximate the posterior of latent states arbitrarily well. In order to better adapt to the local geometry of latent space, the HMC is conducted on Riemannian manifold defined by a positive definite metric. In addition, we show that the proposed HSMC method can improve SSMs realized by both Gaussian Processes (GP) and Neural Network (NN). 1 authors · Jan 3, 2019
1 Adaptive Topological Feature via Persistent Homology: Filtration Learning for Point Clouds Machine learning for point clouds has been attracting much attention, with many applications in various fields, such as shape recognition and material science. For enhancing the accuracy of such machine learning methods, it is often effective to incorporate global topological features, which are typically extracted by persistent homology. In the calculation of persistent homology for a point cloud, we choose a filtration for the point cloud, an increasing sequence of spaces. Since the performance of machine learning methods combined with persistent homology is highly affected by the choice of a filtration, we need to tune it depending on data and tasks. In this paper, we propose a framework that learns a filtration adaptively with the use of neural networks. In order to make the resulting persistent homology isometry-invariant, we develop a neural network architecture with such invariance. Additionally, we show a theoretical result on a finite-dimensional approximation of filtration functions, which justifies the proposed network architecture. Experimental results demonstrated the efficacy of our framework in several classification tasks. 3 authors · Jul 18, 2023
- Diffusion Variational Autoencoders A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties. 3 authors · Jan 25, 2019
- Graph Automorphism Group Equivariant Neural Networks For any graph G having n vertices and its automorphism group Aut(G), we provide a full characterisation of all of the possible Aut(G)-equivariant neural networks whose layers are some tensor power of R^{n}. In particular, we find a spanning set of matrices for the learnable, linear, Aut(G)-equivariant layer functions between such tensor power spaces in the standard basis of R^{n}. 1 authors · Jul 15, 2023
- Complements of finite unions of convex sets Finite unions of convex sets are a central object of study in discrete and computational geometry. In this paper we initiate a systematic study of complements of such unions -- i.e., sets of the form S=R^d setminus (cup_{i=1}^n K_i), where K_i are convex sets. In the first part of the paper we study isolated points in S, whose number is related to the Betti numbers of cup_{i=1}^n K_i and to its non-convexity properties. We obtain upper bounds on the number of such points, which are sharp for n=3 and significantly improve previous bounds of Lawrence and Morris (2009) for all n ll 2^d{d}. In the second part of the paper we study coverings of S by well-behaved sets. We show that S can be covered by at most g(d,n) flats of different dimensions, in such a way that each x in S is covered by a flat whose dimension equals the `local dimension' of S in the neighborhood of x. Furthermore, we determine the structure of a minimum cover that satisfies this property. Then, we study quantitative aspects of this minimum cover and obtain sharp upper bounds on its size in various settings. 2 authors · Aug 26
1 A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction Diffusion-based manifold learning methods have proven useful in representation learning and dimensionality reduction of modern high dimensional, high throughput, noisy datasets. Such datasets are especially present in fields like biology and physics. While it is thought that these methods preserve underlying manifold structure of data by learning a proxy for geodesic distances, no specific theoretical links have been established. Here, we establish such a link via results in Riemannian geometry explicitly connecting heat diffusion to manifold distances. In this process, we also formulate a more general heat kernel based manifold embedding method that we call heat geodesic embeddings. This novel perspective makes clearer the choices available in manifold learning and denoising. Results show that our method outperforms existing state of the art in preserving ground truth manifold distances, and preserving cluster structure in toy datasets. We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure, where our method enables interpolation of withheld timepoints of data. Finally, we show that parameters of our more general method can be configured to give results similar to PHATE (a state-of-the-art diffusion based manifold learning method) as well as SNE (an attraction/repulsion neighborhood based method that forms the basis of t-SNE). 7 authors · May 30, 2023
- Connecting Permutation Equivariant Neural Networks and Partition Diagrams We show how the Schur-Weyl duality that exists between the partition algebra and the symmetric group results in a stronger theoretical foundation for characterising all of the possible permutation equivariant neural networks whose layers are some tensor power of the permutation representation M_n of the symmetric group S_n. In doing so, we unify two separate bodies of literature, and we correct some of the major results that are now widely quoted by the machine learning community. In particular, we find a basis of matrices for the learnable, linear, permutation equivariant layer functions between such tensor power spaces in the standard basis of M_n by using an elegant graphical representation of a basis of set partitions for the partition algebra and its related vector spaces. Also, we show how we can calculate the number of weights that must appear in these layer functions by looking at certain paths through the McKay quiver for M_n. Finally, we describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries. 1 authors · Dec 16, 2022
- O-MMGP: Optimal Mesh Morphing Gaussian Process Regression for Solving PDEs with non-Parametric Geometric Variations We address the computational challenges of solving parametric PDEs with non parametrized geometric variations and non-reducible problems, such as those involving shocks and discontinuities of variable positions. Traditional dimensionality reduction methods like POD struggle with these scenarios due to slowly decaying Kolmogorov widths. To overcome this, we propose a novel non-linear dimensionality reduction technique to reduce the required modes for representation. The non-linear reduction is obtained through a POD after applying a transformation on the fields, which we call optimal mappings, and is a solution to an optimization problem in infinite dimension. The proposed learning framework combines morphing techniques, non-linear dimensionality reduction, and Gaussian Process Regression (GPR). The problem is reformulated on a reference geometry before applying the dimensionality reduction. Our method learns both the optimal mapping, and the solution fields, using a series of GPR models, enabling efficient and accurate modeling of complex parametric PDEs with geometrical variability. The results obtained concur with current state-of-the-art models. We mainly compare our method with the winning solution of the ML4CFD NeurIPS 2024 competition. 4 authors · Feb 17
1 Manify: A Python Library for Learning Non-Euclidean Representations We present Manify, an open-source Python library for non-Euclidean representation learning. Leveraging manifold learning techniques, Manify provides tools for learning embeddings in (products of) non-Euclidean spaces, performing classification and regression with data that lives in such spaces, and estimating the curvature of a manifold. Manify aims to advance research and applications in machine learning by offering a comprehensive suite of tools for manifold-based data analysis. Our source code, examples, datasets, results, and documentation are available at https://github.com/pchlenski/manify 4 authors · Mar 12 1
- Geometric Clifford Algebra Networks We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems. GCANs are based on symmetry group transformations using geometric (Clifford) algebras. We first review the quintessence of modern (plane-based) geometric algebra, which builds on isometries encoded as elements of the Pin(p,q,r) group. We then propose the concept of group action layers, which linearly combine object transformations using pre-specified group actions. Together with a new activation and normalization scheme, these layers serve as adjustable geometric templates that can be refined via gradient descent. Theoretical advantages are strongly reflected in the modeling of three-dimensional rigid body transformations as well as large-scale fluid dynamics simulations, showing significantly improved performance over traditional methods. 5 authors · Feb 13, 2023
- Topological Point Cloud Clustering We present Topological Point Cloud Clustering (TPCC), a new method to cluster points in an arbitrary point cloud based on their contribution to global topological features. TPCC synthesizes desirable features from spectral clustering and topological data analysis and is based on considering the spectral properties of a simplicial complex associated to the considered point cloud. As it is based on considering sparse eigenvector computations, TPCC is similarly easy to interpret and implement as spectral clustering. However, by focusing not just on a single matrix associated to a graph created from the point cloud data, but on a whole set of Hodge-Laplacians associated to an appropriately constructed simplicial complex, we can leverage a far richer set of topological features to characterize the data points within the point cloud and benefit from the relative robustness of topological techniques against noise. We test the performance of TPCC on both synthetic and real-world data and compare it with classical spectral clustering. 2 authors · Mar 29, 2023
- Bosonisation Cohomology: Spin Structure Summation in Every Dimension Gauging fermion parity and summing over spin structures are subtly distinct operations. We introduce 'bosonisation cohomology' groups H_B^{d+2}(X) to capture this difference, for theories in spacetime dimension d equipped with maps to some X. Non-trivial classes in H_B^{d+2}(X) contain theories for which (-1)^F is anomaly-free, but spin structure summation is anomalous. We formulate a sequence of cobordism groups whose failure to be exact is measured by H_B^{d+2}(X), and from here we compute it for X=pt. The result is non-trivial only in dimensions din 4Z+2, being due to the presence of gravitational anomalies. The first few are H_B^4=Z_2, probed by a theory of 8 Majorana-Weyl fermions in d=2, then H_B^8=Z_8, H_B^{12}=Z_{16}times Z_2. We rigorously derive a general formula extending this to every spacetime dimension. Along the way, we compile many general facts about (fermionic and bosonic) anomaly polynomials, and about spin and pin^- (co)bordism generators, that we hope might serve as a useful reference for physicists working with these objects. We briefly discuss some physics applications, including how the H_B^{12} class is trivialised in supergravity. Despite the name, and notation, we make no claim that H_B^bullet(X) actually defines a cohomology theory (in the Eilenberg-Steenrod sense). 2 authors · Nov 17
- Brauer's Group Equivariant Neural Networks We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of R^{n} for three symmetry groups that are missing from the machine learning literature: O(n), the orthogonal group; SO(n), the special orthogonal group; and Sp(n), the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of R^{n} when the group is O(n) or SO(n), and in the symplectic basis of R^{n} when the group is Sp(n). 1 authors · Dec 16, 2022
- Jets of foliations and b^k-algebroids In this article, we introduce and study singular foliations of b^k-type. These singular foliations formalize the properties of vector fields that are tangent to order k along a submanifold W subset M. Our first result is a classification of these foliations, relating them to geometric structures defined in a formal neighborhood of the submanifold, such as jets of distributions that are involutive up to order k-1. When W is a hypersurface, singular foliations of b^k-type are Lie algebroids. In this particular case, they are generalizations of the b^k-tangent bundles introduced by Scott. Indeed, they are always locally isomorphic to b^k-tangent bundles, but globally such an isomorphism is obstructed by a holonomy invariant. Our second main result is a Riemann-Hilbert-style classification of singular foliations of b^k-type in terms of holonomy representations. In this paper, we study singular foliations of b^k-type from several different perspectives. In particular: (1) We study the problem of extending a k-th-order foliation to a (k+1)-th order foliation and prove that this is obstructed by a characteristic class. (2) When W is a hypersurface, we give a detailed study of algebroid differential forms and extend Scott's calculation of the cohomology. (3) We study algebroid symplectic forms in terms of the geometric structures induced on W. In particular, we find that there is a close relationship between the above obstruction class for extensions and the symplectic variation of the symplectic foliation induced on W. 3 authors · Nov 28, 2023
- Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of GANs The discovery of the disentanglement properties of the latent space in GANs motivated a lot of research to find the semantically meaningful directions on it. In this paper, we suggest that the disentanglement property is closely related to the geometry of the latent space. In this regard, we propose an unsupervised method for finding the semantic-factorizing directions on the intermediate latent space of GANs based on the local geometry. Intuitively, our proposed method, called Local Basis, finds the principal variation of the latent space in the neighborhood of the base latent variable. Experimental results show that the local principal variation corresponds to the semantic factorization and traversing along it provides strong robustness to image traversal. Moreover, we suggest an explanation for the limited success in finding the global traversal directions in the latent space, especially W-space of StyleGAN2. We show that W-space is warped globally by comparing the local geometry, discovered from Local Basis, through the metric on Grassmannian Manifold. The global warpage implies that the latent space is not well-aligned globally and therefore the global traversal directions are bound to show limited success on it. 6 authors · Jun 13, 2021
- On a conjecture of Gross, Mansour and Tucker for Δ-matroids Gross, Mansour, and Tucker introduced the partial-duality polynomial of a ribbon graph [Distributions, European J. Combin. 86, 1--20, 2020], the generating function enumerating partial duals by the Euler genus. Chmutov and Vignes-Tourneret wondered if this polynomial and its conjectured properties would hold for general delta-matroids, which are combinatorial abstractions of ribbon graphs. Yan and Jin contributed to this inquiry by identifying a subset of delta-matroids-specifically, even normal binary ones-whose twist polynomials are characterized by a singular term. Building upon this foundation, the current paper expands the scope of the investigation to encompass even non-binary delta-matroids, revealing that none of them have width-changing twists. 1 authors · Apr 21, 2024
- Constructing Invariant and Equivariant Operations by Symmetric Tensor Network Design of neural networks that incorporate symmetry is crucial for geometric deep learning. Central to this effort is the development of invariant and equivariant operations. This works presents a systematic method for constructing valid invariant and equivariant operations. It can handle inputs and outputs in the form of Cartesian tensors with different rank, as well as spherical tensors with different types. In addition, our method features a graphical representation utilizing the symmetric tensor network, which simplifies both the proofs and constructions related to invariant and equivariant functions. We also apply this approach to design the equivariant interaction message for the geometry graph neural network, and equivariant machine learning model to learn the constitutive law of materials. 5 authors · Aug 17
1 Unveiling the Latent Space Geometry of Push-Forward Generative Models Many deep generative models are defined as a push-forward of a Gaussian measure by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs). This work explores the latent space of such deep generative models. A key issue with these models is their tendency to output samples outside of the support of the target distribution when learning disconnected distributions. We investigate the relationship between the performance of these models and the geometry of their latent space. Building on recent developments in geometric measure theory, we prove a sufficient condition for optimality in the case where the dimension of the latent space is larger than the number of modes. Through experiments on GANs, we demonstrate the validity of our theoretical results and gain new insights into the latent space geometry of these models. Additionally, we propose a truncation method that enforces a simplicial cluster structure in the latent space and improves the performance of GANs. 4 authors · Jul 21, 2022
1 Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds Rapid growth of high-dimensional datasets in fields such as single-cell RNA sequencing and spatial genomics has led to unprecedented opportunities for scientific discovery, but it also presents unique computational and statistical challenges. Traditional methods struggle with geometry-aware data generation, interpolation along meaningful trajectories, and transporting populations via feasible paths. To address these issues, we introduce Geometry-Aware Generative Autoencoder (GAGA), a novel framework that combines extensible manifold learning with generative modeling. GAGA constructs a neural network embedding space that respects the intrinsic geometries discovered by manifold learning and learns a novel warped Riemannian metric on the data space. This warped metric is derived from both the points on the data manifold and negative samples off the manifold, allowing it to characterize a meaningful geometry across the entire latent space. Using this metric, GAGA can uniformly sample points on the manifold, generate points along geodesics, and interpolate between populations across the learned manifold using geodesic-guided flows. GAGA shows competitive performance in simulated and real-world datasets, including a 30% improvement over the state-of-the-art methods in single-cell population-level trajectory inference. 10 authors · Oct 16, 2024
1 Riemannian generative decoder Riemannian representation learning typically relies on approximating densities on chosen manifolds. This involves optimizing difficult objectives, potentially harming models. To completely circumvent this issue, we introduce the Riemannian generative decoder which finds manifold-valued maximum likelihood latents with a Riemannian optimizer while training a decoder network. By discarding the encoder, we vastly simplify the manifold constraint compared to current approaches which often only handle few specific manifolds. We validate our approach on three case studies -- a synthetic branching diffusion process, human migrations inferred from mitochondrial DNA, and cells undergoing a cell division cycle -- each showing that learned representations respect the prescribed geometry and capture intrinsic non-Euclidean structure. Our method requires only a decoder, is compatible with existing architectures, and yields interpretable latent spaces aligned with data geometry. 3 authors · Jun 23
- Fullness of the Kuznetsov-Polishchuk exceptional collection for the spinor tenfold Kuznetsov and Polishchuk provided a general algorithm to construct exceptional collections of maximal length for homogeneous varieties of type A,B,C,D. We consider the case of the spinor tenfold and we prove that the corresponding collection is full, i.e. it generates the whole derived category of coherent sheaves. As a step of the proof, we construct some resolutions of homogeneous vector bundles which might be of independent interest. 2 authors · Jun 19, 2023
- Variational integrals on Hessian spaces: partial regularity for critical points We develop regularity theory for critical points of variational integrals defined on Hessian spaces of functions on open, bounded subdomains of R^n, under compactly supported variations. The critical point solves a fourth order nonlinear equation in double divergence form. We show that for smooth convex functionals, a W^{2,infty} critical point with bounded Hessian is smooth provided that its Hessian has a small bounded mean oscillation (BMO). We deduce that the interior singular set of a critical point has Hausdorff dimension at most n-p_0, for some p_0 in (2,3). We state some applications of our results to variational problems in Lagrangian geometry. Finally, we use the Hamiltonian stationary equation to demonstrate the importance of our assumption on the a priori regularity of the critical point. 2 authors · Jul 3, 2023
- Fisher Information Embedding for Node and Graph Learning Attention-based graph neural networks (GNNs), such as graph attention networks (GATs), have become popular neural architectures for processing graph-structured data and learning node embeddings. Despite their empirical success, these models rely on labeled data and the theoretical properties of these models have yet to be fully understood. In this work, we propose a novel attention-based node embedding framework for graphs. Our framework builds upon a hierarchical kernel for multisets of subgraphs around nodes (e.g. neighborhoods) and each kernel leverages the geometry of a smooth statistical manifold to compare pairs of multisets, by "projecting" the multisets onto the manifold. By explicitly computing node embeddings with a manifold of Gaussian mixtures, our method leads to a new attention mechanism for neighborhood aggregation. We provide theoretical insights into generalizability and expressivity of our embeddings, contributing to a deeper understanding of attention-based GNNs. We propose both efficient unsupervised and supervised methods for learning the embeddings. Through experiments on several node classification benchmarks, we demonstrate that our proposed method outperforms existing attention-based graph models like GATs. Our code is available at https://github.com/BorgwardtLab/fisher_information_embedding. 3 authors · May 12, 2023
- Seg-HGNN: Unsupervised and Light-Weight Image Segmentation with Hyperbolic Graph Neural Networks Image analysis in the euclidean space through linear hyperspaces is well studied. However, in the quest for more effective image representations, we turn to hyperbolic manifolds. They provide a compelling alternative to capture complex hierarchical relationships in images with remarkably small dimensionality. To demonstrate hyperbolic embeddings' competence, we introduce a light-weight hyperbolic graph neural network for image segmentation, encompassing patch-level features in a very small embedding size. Our solution, Seg-HGNN, surpasses the current best unsupervised method by 2.5\%, 4\% on VOC-07, VOC-12 for localization, and by 0.8\%, 1.3\% on CUB-200, ECSSD for segmentation, respectively. With less than 7.5k trainable parameters, Seg-HGNN delivers effective and fast (approx 2 images/second) results on very standard GPUs like the GTX1650. This empirical evaluation presents compelling evidence of the efficacy and potential of hyperbolic representations for vision tasks. 3 authors · Sep 10, 2024
- A picture of the space of typical learnable tasks We develop information geometric techniques to understand the representations learned by deep networks when they are trained on different tasks using supervised, meta-, semi-supervised and contrastive learning. We shed light on the following phenomena that relate to the structure of the space of tasks: (1) the manifold of probabilistic models trained on different tasks using different representation learning methods is effectively low-dimensional; (2) supervised learning on one task results in a surprising amount of progress even on seemingly dissimilar tasks; progress on other tasks is larger if the training task has diverse classes; (3) the structure of the space of tasks indicated by our analysis is consistent with parts of the Wordnet phylogenetic tree; (4) episodic meta-learning algorithms and supervised learning traverse different trajectories during training but they fit similar models eventually; (5) contrastive and semi-supervised learning methods traverse trajectories similar to those of supervised learning. We use classification tasks constructed from the CIFAR-10 and Imagenet datasets to study these phenomena. 8 authors · Oct 30, 2022
1 Deformable Surface Reconstruction via Riemannian Metric Preservation Estimating the pose of an object from a monocular image is an inverse problem fundamental in computer vision. The ill-posed nature of this problem requires incorporating deformation priors to solve it. In practice, many materials do not perceptibly shrink or extend when manipulated, constituting a powerful and well-known prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the perfect playground to solve the surface reconstruction problem as they can approximate surfaces with arbitrary precision and allow the computation of differential geometry quantities. This paper presents an approach to inferring continuous deformable surfaces from a sequence of images, which is benchmarked against several techniques and obtains state-of-the-art performance without the need for offline training. 3 authors · Dec 22, 2022
- Machine Learning Algebraic Geometry for Physics We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics. This is a chapter contribution to the book Machine learning and Algebraic Geometry, edited by A. Kasprzyk et al. 4 authors · Apr 21, 2022
- On Enumerating Higher Bruhat Orders Through Deletion and Contraction The higher Bruhat orders B(n,k) were introduced by Manin-Schechtman to study discriminantal hyperplane arrangements and subsequently studied by Ziegler, who connected B(n,k) to oriented matroids. In this paper, we consider the enumeration of B(n,k) and improve upon Balko's asymptotic lower and upper bounds on |B(n,k)| by a factor exponential in k. A proof of Ziegler's formula for |B(n,n-3)| is given and a bijection between a certain subset of B(n,n-4) and totally symmetric plane partitions is proved. Central to our proofs are deletion and contraction operations for the higher Bruhat orders, defined in analogy with matroids. Dual higher Bruhat orders are also introduced, and we construct isomorphisms relating the higher Bruhat orders and their duals. Additionally, weaving functions are introduced to generalize Felsner's encoding of elements in B(n,2) to all higher Bruhat orders B(n,k). 1 authors · Dec 13, 2024