Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming
When building Large Language Models (LLMs), it is paramount to bear safety in mind and protect them with guardrails. Indeed, LLMs should never generate content promoting or normalizing harmful, illegal, or unethical behavior that may contribute to harm to individuals or society. This principle applies to both normal and adversarial use. In response, we introduce ALERT, a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy. It is designed to evaluate the safety of LLMs through red teaming methodologies and consists of more than 45k instructions categorized using our novel taxonomy. By subjecting LLMs to adversarial testing scenarios, ALERT aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models. Furthermore, the fine-grained taxonomy enables researchers to perform an in-depth evaluation that also helps one to assess the alignment with various policies. In our experiments, we extensively evaluate 10 popular open- and closed-source LLMs and demonstrate that many of them still struggle to attain reasonable levels of safety.
Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations
We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.
AgentOps: Enabling Observability of LLM Agents
Large language model (LLM) agents have demonstrated remarkable capabilities across various domains, gaining extensive attention from academia and industry. However, these agents raise significant concerns on AI safety due to their autonomous and non-deterministic behavior, as well as continuous evolving nature . From a DevOps perspective, enabling observability in agents is necessary to ensuring AI safety, as stakeholders can gain insights into the agents' inner workings, allowing them to proactively understand the agents, detect anomalies, and prevent potential failures. Therefore, in this paper, we present a comprehensive taxonomy of AgentOps, identifying the artifacts and associated data that should be traced throughout the entire lifecycle of agents to achieve effective observability. The taxonomy is developed based on a systematic mapping study of existing AgentOps tools. Our taxonomy serves as a reference template for developers to design and implement AgentOps infrastructure that supports monitoring, logging, and analytics. thereby ensuring AI safety.
Using Zero-shot Prompting in the Automatic Creation and Expansion of Topic Taxonomies for Tagging Retail Banking Transactions
This work presents an unsupervised method for automatically constructing and expanding topic taxonomies by using instruction-based fine-tuned LLMs (Large Language Models). We apply topic modeling and keyword extraction techniques to create initial topic taxonomies and LLMs to post-process the resulting terms and create a hierarchy. To expand an existing taxonomy with new terms, we use zero-shot prompting to find out where to add new nodes, which, to our knowledge, is the first work to present such an approach to taxonomy tasks. We use the resulting taxonomies to assign tags that characterize merchants from a retail bank dataset. To evaluate our work, we asked 12 volunteers to answer a two-part form in which we first assessed the quality of the taxonomies created and then the tags assigned to merchants based on that taxonomy. The evaluation revealed a coherence rate exceeding 90% for the chosen taxonomies, while the average coherence for merchant tagging surpassed 80%.
Pre-training vision models for the classification of alerts from wide-field time-domain surveys
Modern wide-field time-domain surveys facilitate the study of transient, variable and moving phenomena by conducting image differencing and relaying alerts to their communities. Machine learning tools have been used on data from these surveys and their precursors for more than a decade, and convolutional neural networks (CNNs), which make predictions directly from input images, saw particularly broad adoption through the 2010s. Since then, continually rapid advances in computer vision have transformed the standard practices around using such models. It is now commonplace to use standardized architectures pre-trained on large corpora of everyday images (e.g., ImageNet). In contrast, time-domain astronomy studies still typically design custom CNN architectures and train them from scratch. Here, we explore the affects of adopting various pre-training regimens and standardized model architectures on the performance of alert classification. We find that the resulting models match or outperform a custom, specialized CNN like what is typically used for filtering alerts. Moreover, our results show that pre-training on galaxy images from Galaxy Zoo tends to yield better performance than pre-training on ImageNet or training from scratch. We observe that the design of standardized architectures are much better optimized than the custom CNN baseline, requiring significantly less time and memory for inference despite having more trainable parameters. On the eve of the Legacy Survey of Space and Time and other image-differencing surveys, these findings advocate for a paradigm shift in the creation of vision models for alerts, demonstrating that greater performance and efficiency, in time and in data, can be achieved by adopting the latest practices from the computer vision field.
Aegis2.0: A Diverse AI Safety Dataset and Risks Taxonomy for Alignment of LLM Guardrails
As Large Language Models (LLMs) and generative AI become increasingly widespread, concerns about content safety have grown in parallel. Currently, there is a clear lack of high-quality, human-annotated datasets that address the full spectrum of LLM-related safety risks and are usable for commercial applications. To bridge this gap, we propose a comprehensive and adaptable taxonomy for categorizing safety risks, structured into 12 top-level hazard categories with an extension to 9 fine-grained subcategories. This taxonomy is designed to meet the diverse requirements of downstream users, offering more granular and flexible tools for managing various risk types. Using a hybrid data generation pipeline that combines human annotations with a multi-LLM "jury" system to assess the safety of responses, we obtain Aegis 2.0, a carefully curated collection of 34,248 samples of human-LLM interactions, annotated according to our proposed taxonomy. To validate its effectiveness, we demonstrate that several lightweight models, trained using parameter-efficient techniques on Aegis 2.0, achieve performance competitive with leading safety models fully fine-tuned on much larger, non-commercial datasets. In addition, we introduce a novel training blend that combines safety with topic following data.This approach enhances the adaptability of guard models, enabling them to generalize to new risk categories defined during inference. We plan to open-source Aegis 2.0 data and models to the research community to aid in the safety guardrailing of LLMs.
CrisiText: A dataset of warning messages for LLM training in emergency communication
Effectively identifying threats and mitigating their potential damage during crisis situations, such as natural disasters or violent attacks, is paramount for safeguarding endangered individuals. To tackle these challenges, AI has been used in assisting humans in emergency situations. Still, the use of NLP techniques remains limited and mostly focuses on classification tasks. The significant potential of timely warning message generation using NLG architectures, however, has been largely overlooked. In this paper we present CrisiText, the first large-scale dataset for the generation of warning messages across 13 different types of crisis scenarios. The dataset contains more than 400,000 warning messages (spanning almost 18,000 crisis situations) aimed at assisting civilians during and after such events. To generate the dataset, we started from existing crisis descriptions and created chains of events related to the scenarios. Each event was then paired with a warning message. The generations follow experts' written guidelines to ensure correct terminology and factuality of their suggestions. Additionally, each message is accompanied by three suboptimal warning types to allow for the study of different NLG approaches. To this end, we conducted a series of experiments comparing supervised fine-tuning setups with preference alignment, zero-shot, and few-shot approaches. We further assessed model performance in out-of-distribution scenarios and evaluated the effectiveness of an automatic post-editor.
Collaborative Alerts Ranking for Anomaly Detection
Given a large number of low-level heterogeneous categorical alerts from an anomaly detection system, how to characterize complex relationships between different alerts, filter out false positives, and deliver trustworthy rankings and suggestions to end users? This problem is motivated by and generalized from applications in enterprise security and attack scenario reconstruction. While existing techniques focus on either reconstructing abnormal scenarios or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand anomaly behaviors. In this paper, we propose CAR, a collaborative alerts ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a tree-based model to capture both short-term correlations and long-term dependencies in each alert sequence, which identifies abnormal action sequences. Then, an embedding-based model is employed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into one optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments, using real-world enterprise monitoring data and real attacks launched by professional hackers, show that CAR can accurately identify true positive alerts and successfully reconstruct attack scenarios at the same time.
Enquire One's Parent and Child Before Decision: Fully Exploit Hierarchical Structure for Self-Supervised Taxonomy Expansion
Taxonomy is a hierarchically structured knowledge graph that plays a crucial role in machine intelligence. The taxonomy expansion task aims to find a position for a new term in an existing taxonomy to capture the emerging knowledge in the world and keep the taxonomy dynamically updated. Previous taxonomy expansion solutions neglect valuable information brought by the hierarchical structure and evaluate the correctness of merely an added edge, which downgrade the problem to node-pair scoring or mini-path classification. In this paper, we propose the Hierarchy Expansion Framework (HEF), which fully exploits the hierarchical structure's properties to maximize the coherence of expanded taxonomy. HEF makes use of taxonomy's hierarchical structure in multiple aspects: i) HEF utilizes subtrees containing most relevant nodes as self-supervision data for a complete comparison of parental and sibling relations; ii) HEF adopts a coherence modeling module to evaluate the coherence of a taxonomy's subtree by integrating hypernymy relation detection and several tree-exclusive features; iii) HEF introduces the Fitting Score for position selection, which explicitly evaluates both path and level selections and takes full advantage of parental relations to interchange information for disambiguation and self-correction. Extensive experiments show that by better exploiting the hierarchical structure and optimizing taxonomy's coherence, HEF vastly surpasses the prior state-of-the-art on three benchmark datasets by an average improvement of 46.7% in accuracy and 32.3% in mean reciprocal rank.
TaxoAdapt: Aligning LLM-Based Multidimensional Taxonomy Construction to Evolving Research Corpora
The rapid evolution of scientific fields introduces challenges in organizing and retrieving scientific literature. While expert-curated taxonomies have traditionally addressed this need, the process is time-consuming and expensive. Furthermore, recent automatic taxonomy construction methods either (1) over-rely on a specific corpus, sacrificing generalizability, or (2) depend heavily on the general knowledge of large language models (LLMs) contained within their pre-training datasets, often overlooking the dynamic nature of evolving scientific domains. Additionally, these approaches fail to account for the multi-faceted nature of scientific literature, where a single research paper may contribute to multiple dimensions (e.g., methodology, new tasks, evaluation metrics, benchmarks). To address these gaps, we propose TaxoAdapt, a framework that dynamically adapts an LLM-generated taxonomy to a given corpus across multiple dimensions. TaxoAdapt performs iterative hierarchical classification, expanding both the taxonomy width and depth based on corpus' topical distribution. We demonstrate its state-of-the-art performance across a diverse set of computer science conferences over the years to showcase its ability to structure and capture the evolution of scientific fields. As a multidimensional method, TaxoAdapt generates taxonomies that are 26.51% more granularity-preserving and 50.41% more coherent than the most competitive baselines judged by LLMs.
The Possible, the Plausible, and the Desirable: Event-Based Modality Detection for Language Processing
Modality is the linguistic ability to describe events with added information such as how desirable, plausible, or feasible they are. Modality is important for many NLP downstream tasks such as the detection of hedging, uncertainty, speculation, and more. Previous studies that address modality detection in NLP often restrict modal expressions to a closed syntactic class, and the modal sense labels are vastly different across different studies, lacking an accepted standard. Furthermore, these senses are often analyzed independently of the events that they modify. This work builds on the theoretical foundations of the Georgetown Gradable Modal Expressions (GME) work by Rubinstein et al. (2013) to propose an event-based modality detection task where modal expressions can be words of any syntactic class and sense labels are drawn from a comprehensive taxonomy which harmonizes the modal concepts contributed by the different studies. We present experiments on the GME corpus aiming to detect and classify fine-grained modal concepts and associate them with their modified events. We show that detecting and classifying modal expressions is not only feasible, but also improves the detection of modal events in their own right.
TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks
While LLMs have shown great success in understanding and generating text in traditional conversational settings, their potential for performing ill-defined complex tasks is largely under-studied. Indeed, we are yet to conduct comprehensive benchmarking studies with multiple LLMs that are exclusively focused on a complex task. However, conducting such benchmarking studies is challenging because of the large variations in LLMs' performance when different prompt types/styles are used and different degrees of detail are provided in the prompts. To address this issue, the paper proposes a general taxonomy that can be used to design prompts with specific properties in order to perform a wide range of complex tasks. This taxonomy will allow future benchmarking studies to report the specific categories of prompts used as part of the study, enabling meaningful comparisons across different studies. Also, by establishing a common standard through this taxonomy, researchers will be able to draw more accurate conclusions about LLMs' performance on a specific complex task.
Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm Reduction
Understanding the landscape of potential harms from algorithmic systems enables practitioners to better anticipate consequences of the systems they build. It also supports the prospect of incorporating controls to help minimize harms that emerge from the interplay of technologies and social and cultural dynamics. A growing body of scholarship has identified a wide range of harms across different algorithmic technologies. However, computing research and practitioners lack a high level and synthesized overview of harms from algorithmic systems. Based on a scoping review of computing research (n=172), we present an applied taxonomy of sociotechnical harms to support a more systematic surfacing of potential harms in algorithmic systems. The final taxonomy builds on and refers to existing taxonomies, classifications, and terminologies. Five major themes related to sociotechnical harms - representational, allocative, quality-of-service, interpersonal harms, and social system/societal harms - and sub-themes are presented along with a description of these categories. We conclude with a discussion of challenges and opportunities for future research.
FoodTaxo: Generating Food Taxonomies with Large Language Models
We investigate the utility of Large Language Models for automated taxonomy generation and completion specifically applied to taxonomies from the food technology industry. We explore the extent to which taxonomies can be completed from a seed taxonomy or generated without a seed from a set of known concepts, in an iterative fashion using recent prompting techniques. Experiments on five taxonomies using an open-source LLM (Llama-3), while promising, point to the difficulty of correctly placing inner nodes.
A Taxonomy of Systemic Risks from General-Purpose AI
Through a systematic review of academic literature, we propose a taxonomy of systemic risks associated with artificial intelligence (AI), in particular general-purpose AI. Following the EU AI Act's definition, we consider systemic risks as large-scale threats that can affect entire societies or economies. Starting with an initial pool of 1,781 documents, we analyzed 86 selected papers to identify 13 categories of systemic risks and 50 contributing sources. Our findings reveal a complex landscape of potential threats, ranging from environmental harm and structural discrimination to governance failures and loss of control. Key sources of systemic risk emerge from knowledge gaps, challenges in recognizing harm, and the unpredictable trajectory of AI development. The taxonomy provides a snapshot of current academic literature on systemic risks. This paper contributes to AI safety research by providing a structured groundwork for understanding and addressing the potential large-scale negative societal impacts of general-purpose AI. The taxonomy can inform policymakers in risk prioritization and regulatory development.
A Survey on Cross-Architectural IoT Malware Threat Hunting
In recent years, the increase in non-Windows malware threats had turned the focus of the cybersecurity community. Research works on hunting Windows PE-based malwares are maturing, whereas the developments on Linux malware threat hunting are relatively scarce. With the advent of the Internet of Things (IoT) era, smart devices that are getting integrated into human life have become a hackers highway for their malicious activities. The IoT devices employ various Unix-based architectures that follow ELF (Executable and Linkable Format) as their standard binary file specification. This study aims at providing a comprehensive survey on the latest developments in cross-architectural IoT malware detection and classification approaches. Aided by a modern taxonomy, we discuss the feature representations, feature extraction techniques, and machine learning models employed in the surveyed works. We further provide more insights on the practical challenges involved in cross-architectural IoT malware threat hunting and discuss various avenues to instill potential future research.
A Holistic Approach to Undesired Content Detection in the Real World
We present a holistic approach to building a robust and useful natural language classification system for real-world content moderation. The success of such a system relies on a chain of carefully designed and executed steps, including the design of content taxonomies and labeling instructions, data quality control, an active learning pipeline to capture rare events, and a variety of methods to make the model robust and to avoid overfitting. Our moderation system is trained to detect a broad set of categories of undesired content, including sexual content, hateful content, violence, self-harm, and harassment. This approach generalizes to a wide range of different content taxonomies and can be used to create high-quality content classifiers that outperform off-the-shelf models.
AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies
We present a comprehensive AI risk taxonomy derived from eight government policies from the European Union, United States, and China and 16 company policies worldwide, making a significant step towards establishing a unified language for generative AI safety evaluation. We identify 314 unique risk categories organized into a four-tiered taxonomy. At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks. The taxonomy establishes connections between various descriptions and approaches to risk, highlighting the overlaps and discrepancies between public and private sector conceptions of risk. By providing this unified framework, we aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.
BeepBank-500: A Synthetic Earcon Mini-Corpus for UI Sound Research and Psychoacoustics Research
We introduce BeepBank-500, a compact, fully synthetic earcon/alert dataset (300-500 clips) designed for rapid, rights-clean experimentation in human-computer interaction and audio machine learning. Each clip is generated from a parametric recipe controlling waveform family (sine, square, triangle, FM), fundamental frequency, duration, amplitude envelope, amplitude modulation (AM), and lightweight Schroeder-style reverberation. We use three reverberation settings: dry, and two synthetic rooms denoted 'rir small' ('small') and 'rir medium' ('medium') throughout the paper and in the metadata. We release mono 48 kHz WAV audio (16-bit), a rich metadata table (signal/spectral features), and tiny reproducible baselines for (i) waveform-family classification and (ii) f0 regression on single tones. The corpus targets tasks such as earcon classification, timbre analyses, and onset detection, with clearly stated licensing and limitations. Audio is dedicated to the public domain via CC0-1.0; code is under MIT. Data DOI: https://doi.org/10.5281/zenodo.17172015. Code: https://github.com/mandip42/earcons-mini-500.
T2I-RiskyPrompt: A Benchmark for Safety Evaluation, Attack, and Defense on Text-to-Image Model
Using risky text prompts, such as pornography and violent prompts, to test the safety of text-to-image (T2I) models is a critical task. However, existing risky prompt datasets are limited in three key areas: 1) limited risky categories, 2) coarse-grained annotation, and 3) low effectiveness. To address these limitations, we introduce T2I-RiskyPrompt, a comprehensive benchmark designed for evaluating safety-related tasks in T2I models. Specifically, we first develop a hierarchical risk taxonomy, which consists of 6 primary categories and 14 fine-grained subcategories. Building upon this taxonomy, we construct a pipeline to collect and annotate risky prompts. Finally, we obtain 6,432 effective risky prompts, where each prompt is annotated with both hierarchical category labels and detailed risk reasons. Moreover, to facilitate the evaluation, we propose a reason-driven risky image detection method that explicitly aligns the MLLM with safety annotations. Based on T2I-RiskyPrompt, we conduct a comprehensive evaluation of eight T2I models, nine defense methods, five safety filters, and five attack strategies, offering nine key insights into the strengths and limitations of T2I model safety. Finally, we discuss potential applications of T2I-RiskyPrompt across various research fields. The dataset and code are provided in https://github.com/datar001/T2I-RiskyPrompt.
TnT-LLM: Text Mining at Scale with Large Language Models
Transforming unstructured text into structured and meaningful forms, organized by useful category labels, is a fundamental step in text mining for downstream analysis and application. However, most existing methods for producing label taxonomies and building text-based label classifiers still rely heavily on domain expertise and manual curation, making the process expensive and time-consuming. This is particularly challenging when the label space is under-specified and large-scale data annotations are unavailable. In this paper, we address these challenges with Large Language Models (LLMs), whose prompt-based interface facilitates the induction and use of large-scale pseudo labels. We propose TnT-LLM, a two-phase framework that employs LLMs to automate the process of end-to-end label generation and assignment with minimal human effort for any given use-case. In the first phase, we introduce a zero-shot, multi-stage reasoning approach which enables LLMs to produce and refine a label taxonomy iteratively. In the second phase, LLMs are used as data labelers that yield training samples so that lightweight supervised classifiers can be reliably built, deployed, and served at scale. We apply TnT-LLM to the analysis of user intent and conversational domain for Bing Copilot (formerly Bing Chat), an open-domain chat-based search engine. Extensive experiments using both human and automatic evaluation metrics demonstrate that TnT-LLM generates more accurate and relevant label taxonomies when compared against state-of-the-art baselines, and achieves a favorable balance between accuracy and efficiency for classification at scale. We also share our practical experiences and insights on the challenges and opportunities of using LLMs for large-scale text mining in real-world applications.
HiFi-KPI: A Dataset for Hierarchical KPI Extraction from Earnings Filings
The U.S. Securities and Exchange Commission (SEC) requires that public companies file financial reports tagging numbers with the machine readable inline eXtensible Business Reporting Language (iXBRL) standard. However, the highly complex and highly granular taxonomy defined by iXBRL limits label transferability across domains. In this paper, we introduce the Hierarchical Financial Key Performance Indicator (HiFi-KPI) dataset, designed to facilitate numerical KPI extraction at specified levels of granularity from unstructured financial text. Our approach organizes a 218,126-label hierarchy using a taxonomy based grouping method, investigating which taxonomy layer provides the most meaningful structure. HiFi-KPI comprises ~1.8M paragraphs and ~5M entities, each linked to a label in the iXBRL-specific calculation and presentation taxonomies. We provide baselines using encoder-based approaches and structured extraction using Large Language Models (LLMs). To simplify LLM inference and evaluation, we additionally release HiFi-KPI Lite, a manually curated subset with four expert-mapped labels. We publicly release all artifacts
A New Task: Deriving Semantic Class Targets for the Physical Sciences
We define deriving semantic class targets as a novel multi-modal task. By doing so, we aim to improve classification schemes in the physical sciences which can be severely abstracted and obfuscating. We address this task for upcoming radio astronomy surveys and present the derived semantic radio galaxy morphology class targets.
MAILEX: Email Event and Argument Extraction
In this work, we present the first dataset, MailEx, for performing event extraction from conversational email threads. To this end, we first proposed a new taxonomy covering 10 event types and 76 arguments in the email domain. Our final dataset includes 1.5K email threads and ~4K emails, which are annotated with totally ~8K event instances. To understand the task challenges, we conducted a series of experiments comparing three types of approaches, i.e., fine-tuned sequence labeling, fine-tuned generative extraction, and few-shot in-context learning. Our results showed that the task of email event extraction is far from being addressed, due to challenges lying in, e.g., extracting non-continuous, shared trigger spans, extracting non-named entity arguments, and modeling the email conversational history. Our work thus suggests more future investigations in this domain-specific event extraction task.
AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
An improved infrastructure for the IceCube realtime system
The IceCube realtime alert system has been operating since 2016. It provides prompt alerts on high-energy neutrino events to the astroparticle physics community. The localization regions for the incoming direction of neutrinos are published through NASA's Gamma-ray Coordinate Network (GCN). The IceCube realtime system consists of infrastructure dedicated to the selection of alert events, the reconstruction of their topology and arrival direction, the calculation of directional uncertainty contours and the distribution of the event information through public alert networks. Using a message-based workflow management system, a dedicated software (SkyDriver) provides a representational state transfer (REST) interface to parallelized reconstruction algorithms. In this contribution, we outline the improvements of the internal infrastructure of the IceCube realtime system that aims to streamline the internal handling of neutrino events, their distribution to the SkyDriver interface, the collection of the reconstruction results as well as their conversion into human- and machine-readable alerts to be publicly distributed through different alert networks. An approach for the long-term storage and cataloging of alert events according to findability, accessibility, interoperability and reusability (FAIR) principles is outlined.
SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval 2020)
We present the results and main findings of SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval 2020). The task involves three subtasks corresponding to the hierarchical taxonomy of the OLID schema (Zampieri et al., 2019a) from OffensEval 2019. The task featured five languages: English, Arabic, Danish, Greek, and Turkish for Subtask A. In addition, English also featured Subtasks B and C. OffensEval 2020 was one of the most popular tasks at SemEval-2020 attracting a large number of participants across all subtasks and also across all languages. A total of 528 teams signed up to participate in the task, 145 teams submitted systems during the evaluation period, and 70 submitted system description papers.
Efficient Large Language Models: A Survey
Large Language Models (LLMs) have demonstrated remarkable capabilities in important tasks such as natural language understanding, language generation, and complex reasoning and have the potential to make a substantial impact on our society. Such capabilities, however, come with the considerable resources they demand, highlighting the strong need to develop effective techniques for addressing their efficiency challenges. In this survey, we provide a systematic and comprehensive review of efficient LLMs research. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics from model-centric, data-centric, and framework-centric perspective, respectively. We have also created a GitHub repository where we compile the papers featured in this survey at https://github.com/AIoT-MLSys-Lab/EfficientLLMs, and will actively maintain this repository and incorporate new research as it emerges. We hope our survey can serve as a valuable resource to help researchers and practitioners gain a systematic understanding of the research developments in efficient LLMs and inspire them to contribute to this important and exciting field.
From Interaction to Impact: Towards Safer AI Agents Through Understanding and Evaluating UI Operation Impacts
With advances in generative AI, there is increasing work towards creating autonomous agents that can manage daily tasks by operating user interfaces (UIs). While prior research has studied the mechanics of how AI agents might navigate UIs and understand UI structure, the effects of agents and their autonomous actions-particularly those that may be risky or irreversible-remain under-explored. In this work, we investigate the real-world impacts and consequences of UI actions by AI agents. We began by developing a taxonomy of the impacts of UI actions through a series of workshops with domain experts. Following this, we conducted a data synthesis study to gather realistic UI screen traces and action data that users perceive as impactful. We then used our impact categories to annotate our collected data and data repurposed from existing UI navigation datasets. Our quantitative evaluations of different large language models (LLMs) and variants demonstrate how well different LLMs can understand the impacts of UI actions that might be taken by an agent. We show that our taxonomy enhances the reasoning capabilities of these LLMs for understanding the impacts of UI actions, but our findings also reveal significant gaps in their ability to reliably classify more nuanced or complex categories of impact.
A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect Dataset
In an effort to catalog insect biodiversity, we propose a new large dataset of hand-labelled insect images, the BIOSCAN-Insect Dataset. Each record is taxonomically classified by an expert, and also has associated genetic information including raw nucleotide barcode sequences and assigned barcode index numbers, which are genetically-based proxies for species classification. This paper presents a curated million-image dataset, primarily to train computer-vision models capable of providing image-based taxonomic assessment, however, the dataset also presents compelling characteristics, the study of which would be of interest to the broader machine learning community. Driven by the biological nature inherent to the dataset, a characteristic long-tailed class-imbalance distribution is exhibited. Furthermore, taxonomic labelling is a hierarchical classification scheme, presenting a highly fine-grained classification problem at lower levels. Beyond spurring interest in biodiversity research within the machine learning community, progress on creating an image-based taxonomic classifier will also further the ultimate goal of all BIOSCAN research: to lay the foundation for a comprehensive survey of global biodiversity. This paper introduces the dataset and explores the classification task through the implementation and analysis of a baseline classifier.
A Strongly-Labelled Polyphonic Dataset of Urban Sounds with Spatiotemporal Context
This paper introduces SINGA:PURA, a strongly labelled polyphonic urban sound dataset with spatiotemporal context. The data were collected via several recording units deployed across Singapore as a part of a wireless acoustic sensor network. These recordings were made as part of a project to identify and mitigate noise sources in Singapore, but also possess a wider applicability to sound event detection, classification, and localization. This paper introduces an accompanying hierarchical label taxonomy, which has been designed to be compatible with other existing datasets for urban sound tagging while also able to capture sound events unique to the Singaporean context. This paper details the data collection, annotation, and processing methodologies for the creation of the dataset. We further perform exploratory data analysis and include the performance of a baseline model on the dataset as a benchmark.
Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
Assessing the effectiveness of large language models (LLMs) in addressing diverse tasks is essential for comprehending their strengths and weaknesses. Conventional evaluation techniques typically apply a single prompting strategy uniformly across datasets, not considering the varying degrees of task complexity. We introduce the Hierarchical Prompting Taxonomy (HPT), a taxonomy that employs a Hierarchical Prompt Framework (HPF) composed of five unique prompting strategies, arranged from the simplest to the most complex, to assess LLMs more precisely and to offer a clearer perspective. This taxonomy assigns a score, called the Hierarchical Prompting Score (HP-Score), to datasets as well as LLMs based on the rules of the taxonomy, providing a nuanced understanding of their ability to solve diverse tasks and offering a universal measure of task complexity. Additionally, we introduce the Adaptive Hierarchical Prompt framework, which automates the selection of appropriate prompting strategies for each task. This study compares manual and adaptive hierarchical prompt frameworks using four instruction-tuned LLMs, namely Llama 3 8B, Phi 3 3.8B, Mistral 7B, and Gemma 7B, across four datasets: BoolQ, CommonSenseQA (CSQA), IWSLT-2017 en-fr (IWSLT), and SamSum. Experiments demonstrate the effectiveness of HPT, providing a reliable way to compare different tasks and LLM capabilities. This paper leads to the development of a universal evaluation metric that can be used to evaluate both the complexity of the datasets and the capabilities of LLMs. The implementation of both manual HPF and adaptive HPF is publicly available.
Tales of the 2025 Los Angeles Fire: Hotwash for Public Health Concerns in Reddit via LLM-Enhanced Topic Modeling
Wildfires have become increasingly frequent, irregular, and severe in recent years. Understanding how affected populations perceive and respond during wildfire crises is critical for timely and empathetic disaster response. Social media platforms offer a crowd-sourced channel to capture evolving public discourse, providing hyperlocal information and insight into public sentiment. This study analyzes Reddit discourse during the 2025 Los Angeles wildfires, spanning from the onset of the disaster to full containment. We collect 385 posts and 114,879 comments related to the Palisades and Eaton fires. We adopt topic modeling methods to identify the latent topics, enhanced by large language models (LLMs) and human-in-the-loop (HITL) refinement. Furthermore, we develop a hierarchical framework to categorize latent topics, consisting of two main categories, Situational Awareness (SA) and Crisis Narratives (CN). The volume of SA category closely aligns with real-world fire progressions, peaking within the first 2-5 days as the fires reach the maximum extent. The most frequent co-occurring category set of public health and safety, loss and damage, and emergency resources expands on a wide range of health-related latent topics, including environmental health, occupational health, and one health. Grief signals and mental health risks consistently accounted for 60 percentage and 40 percentage of CN instances, respectively, with the highest total volume occurring at night. This study contributes the first annotated social media dataset on the 2025 LA fires, and introduces a scalable multi-layer framework that leverages topic modeling for crisis discourse analysis. By identifying persistent public health concerns, our results can inform more empathetic and adaptive strategies for disaster response, public health communication, and future research in comparable climate-related disaster events.
AlerTiger: Deep Learning for AI Model Health Monitoring at LinkedIn
Data-driven companies use AI models extensively to develop products and intelligent business solutions, making the health of these models crucial for business success. Model monitoring and alerting in industries pose unique challenges, including a lack of clear model health metrics definition, label sparsity, and fast model iterations that result in short-lived models and features. As a product, there are also requirements for scalability, generalizability, and explainability. To tackle these challenges, we propose AlerTiger, a deep-learning-based MLOps model monitoring system that helps AI teams across the company monitor their AI models' health by detecting anomalies in models' input features and output score over time. The system consists of four major steps: model statistics generation, deep-learning-based anomaly detection, anomaly post-processing, and user alerting. Our solution generates three categories of statistics to indicate AI model health, offers a two-stage deep anomaly detection solution to address label sparsity and attain the generalizability of monitoring new models, and provides holistic reports for actionable alerts. This approach has been deployed to most of LinkedIn's production AI models for over a year and has identified several model issues that later led to significant business metric gains after fixing.
The future of human-AI collaboration: a taxonomy of design knowledge for hybrid intelligence systems
Recent technological advances, especially in the field of machine learning, provide astonishing progress on the road towards artificial general intelligence. However, tasks in current real-world business applications cannot yet be solved by machines alone. We, therefore, identify the need for developing socio-technological ensembles of humans and machines. Such systems possess the ability to accomplish complex goals by combining human and artificial intelligence to collectively achieve superior results and continuously improve by learning from each other. Thus, the need for structured design knowledge for those systems arises. Following a taxonomy development method, this article provides three main contributions: First, we present a structured overview of interdisciplinary research on the role of humans in the machine learning pipeline. Second, we envision hybrid intelligence systems and conceptualize the relevant dimensions for system design for the first time. Finally, we offer useful guidance for system developers during the implementation of such applications.
Rethinking the Event Coding Pipeline with Prompt Entailment
For monitoring crises, political events are extracted from the news. The large amount of unstructured full-text event descriptions makes a case-by-case analysis unmanageable, particularly for low-resource humanitarian aid organizations. This creates a demand to classify events into event types, a task referred to as event coding. Typically, domain experts craft an event type ontology, annotators label a large dataset and technical experts develop a supervised coding system. In this work, we propose PR-ENT, a new event coding approach that is more flexible and resource-efficient, while maintaining competitive accuracy: first, we extend an event description such as "Military injured two civilians'' by a template, e.g. "People were [Z]" and prompt a pre-trained (cloze) language model to fill the slot Z. Second, we select answer candidates Z* = {"injured'', "hurt"...} by treating the event description as premise and the filled templates as hypothesis in a textual entailment task. This allows domain experts to draft the codebook directly as labeled prompts and interpretable answer candidates. This human-in-the-loop process is guided by our interactive codebook design tool. We evaluate PR-ENT in several robustness checks: perturbing the event description and prompt template, restricting the vocabulary and removing contextual information.
A Functional Taxonomy of Music Generation Systems
Digital advances have transformed the face of automatic music generation since its beginnings at the dawn of computing. Despite the many breakthroughs, issues such as the musical tasks targeted by different machines and the degree to which they succeed remain open questions. We present a functional taxonomy for music generation systems with reference to existing systems. The taxonomy organizes systems according to the purposes for which they were designed. It also reveals the inter-relatedness amongst the systems. This design-centered approach contrasts with predominant methods-based surveys and facilitates the identification of grand challenges to set the stage for new breakthroughs.
A Taxonomy of Schedulers -- Operating Systems, Clusters and Big Data Frameworks
This review analyzes deployed and actively used workload schedulers' solutions and presents a taxonomy in which those systems are divided into several hierarchical groups based on their architecture and design. While other taxonomies do exist, this review has focused on the key design factors that affect the throughput and scalability of a given solution, as well as the incremental improvements which bettered such an architecture. This review gives special attention to Google's Borg, which is one of the most advanced and published systems of this kind.
On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities
As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for all parties involved. For market holders and researchers, in particular, the large number of samples has made manual malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving Android malware has made them unable to maintain their accuracy over time. This has created a need in the community to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omitting other important stages, such as model evaluation and explanation. In this paper, we address this problem with a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel procedural taxonomy of the published literature, covering how they have used ML algorithms, what features they have engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps in knowledge and provide ideas for improvement and future work.
PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters
Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.
Multimodal Machine Learning: A Survey and Taxonomy
Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors. Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction
Evaluation Metrics for Text Data Augmentation in NLP
Recent surveys on data augmentation for natural language processing have reported different techniques and advancements in the field. Several frameworks, tools, and repositories promote the implementation of text data augmentation pipelines. However, a lack of evaluation criteria and standards for method comparison due to different tasks, metrics, datasets, architectures, and experimental settings makes comparisons meaningless. Also, a lack of methods unification exists and text data augmentation research would benefit from unified metrics to compare different augmentation methods. Thus, academics and the industry endeavor relevant evaluation metrics for text data augmentation techniques. The contribution of this work is to provide a taxonomy of evaluation metrics for text augmentation methods and serve as a direction for a unified benchmark. The proposed taxonomy organizes categories that include tools for implementation and metrics calculation. Finally, with this study, we intend to present opportunities to explore the unification and standardization of text data augmentation metrics.
DeepKnown-Guard: A Proprietary Model-Based Safety Response Framework for AI Agents
With the widespread application of Large Language Models (LLMs), their associated security issues have become increasingly prominent, severely constraining their trustworthy deployment in critical domains. This paper proposes a novel safety response framework designed to systematically safeguard LLMs at both the input and output levels. At the input level, the framework employs a supervised fine-tuning-based safety classification model. Through a fine-grained four-tier taxonomy (Safe, Unsafe, Conditionally Safe, Focused Attention), it performs precise risk identification and differentiated handling of user queries, significantly enhancing risk coverage and business scenario adaptability, and achieving a risk recall rate of 99.3%. At the output level, the framework integrates Retrieval-Augmented Generation (RAG) with a specifically fine-tuned interpretation model, ensuring all responses are grounded in a real-time, trustworthy knowledge base. This approach eliminates information fabrication and enables result traceability. Experimental results demonstrate that our proposed safety control model achieves a significantly higher safety score on public safety evaluation benchmarks compared to the baseline model, TinyR1-Safety-8B. Furthermore, on our proprietary high-risk test set, the framework's components attained a perfect 100% safety score, validating their exceptional protective capabilities in complex risk scenarios. This research provides an effective engineering pathway for building high-security, high-trust LLM applications.
The Open Syndrome Definition
Case definitions are essential for effectively communicating public health threats. However, the absence of a standardized, machine-readable format poses significant challenges to interoperability, epidemiological research, the exchange of qualitative data, and the effective application of computational analysis methods, including artificial intelligence (AI). This complicates comparisons and collaborations across organizations and regions, limits data integration, and hinders technological innovation in public health. To address these issues, we propose the first open, machine-readable format for representing case and syndrome definitions. Additionally, we introduce the first comprehensive dataset of standardized case definitions and tools to convert existing human-readable definitions into machine-readable formats. We also provide an accessible online platform for browsing, analyzing, and contributing new definitions, available at https://opensyndrome.org. The Open Syndrome Definition format enables consistent, scalable use of case definitions across systems, unlocking AI's potential to strengthen public health preparedness and response. The source code for the format can be found at https://github.com/OpenSyndrome/schema under the MIT license.
PHEE: A Dataset for Pharmacovigilance Event Extraction from Text
The primary goal of drug safety researchers and regulators is to promptly identify adverse drug reactions. Doing so may in turn prevent or reduce the harm to patients and ultimately improve public health. Evaluating and monitoring drug safety (i.e., pharmacovigilance) involves analyzing an ever growing collection of spontaneous reports from health professionals, physicians, and pharmacists, and information voluntarily submitted by patients. In this scenario, facilitating analysis of such reports via automation has the potential to rapidly identify safety signals. Unfortunately, public resources for developing natural language models for this task are scant. We present PHEE, a novel dataset for pharmacovigilance comprising over 5000 annotated events from medical case reports and biomedical literature, making it the largest such public dataset to date. We describe the hierarchical event schema designed to provide coarse and fine-grained information about patients' demographics, treatments and (side) effects. Along with the discussion of the dataset, we present a thorough experimental evaluation of current state-of-the-art approaches for biomedical event extraction, point out their limitations, and highlight open challenges to foster future research in this area.
Leveraging Large Language Models for Generating Research Topic Ontologies: A Multi-Disciplinary Study
Ontologies and taxonomies of research fields are critical for managing and organising scientific knowledge, as they facilitate efficient classification, dissemination and retrieval of information. However, the creation and maintenance of such ontologies are expensive and time-consuming tasks, usually requiring the coordinated effort of multiple domain experts. Consequently, ontologies in this space often exhibit uneven coverage across different disciplines, limited inter-domain connectivity, and infrequent updating cycles. In this study, we investigate the capability of several large language models to identify semantic relationships among research topics within three academic domains: biomedicine, physics, and engineering. The models were evaluated under three distinct conditions: zero-shot prompting, chain-of-thought prompting, and fine-tuning on existing ontologies. Additionally, we assessed the cross-domain transferability of fine-tuned models by measuring their performance when trained in one domain and subsequently applied to a different one. To support this analysis, we introduce PEM-Rel-8K, a novel dataset consisting of over 8,000 relationships extracted from the most widely adopted taxonomies in the three disciplines considered in this study: MeSH, PhySH, and IEEE. Our experiments demonstrate that fine-tuning LLMs on PEM-Rel-8K yields excellent performance across all disciplines.
Decoding the End-to-end Writing Trajectory in Scholarly Manuscripts
Scholarly writing presents a complex space that generally follows a methodical procedure to plan and produce both rationally sound and creative compositions. Recent works involving large language models (LLM) demonstrate considerable success in text generation and revision tasks; however, LLMs still struggle to provide structural and creative feedback on the document level that is crucial to academic writing. In this paper, we introduce a novel taxonomy that categorizes scholarly writing behaviors according to intention, writer actions, and the information types of the written data. We also provide ManuScript, an original dataset annotated with a simplified version of our taxonomy to show writer actions and the intentions behind them. Motivated by cognitive writing theory, our taxonomy for scientific papers includes three levels of categorization in order to trace the general writing flow and identify the distinct writer activities embedded within each higher-level process. ManuScript intends to provide a complete picture of the scholarly writing process by capturing the linearity and non-linearity of writing trajectory, such that writing assistants can provide stronger feedback and suggestions on an end-to-end level. The collected writing trajectories are viewed at https://minnesotanlp.github.io/REWARD_demo/
The Art of Saying No: Contextual Noncompliance in Language Models
Chat-based language models are designed to be helpful, yet they should not comply with every user request. While most existing work primarily focuses on refusal of "unsafe" queries, we posit that the scope of noncompliance should be broadened. We introduce a comprehensive taxonomy of contextual noncompliance describing when and how models should not comply with user requests. Our taxonomy spans a wide range of categories including incomplete, unsupported, indeterminate, and humanizing requests (in addition to unsafe requests). To test noncompliance capabilities of language models, we use this taxonomy to develop a new evaluation suite of 1000 noncompliance prompts. We find that most existing models show significantly high compliance rates in certain previously understudied categories with models like GPT-4 incorrectly complying with as many as 30% of requests. To address these gaps, we explore different training strategies using a synthetically-generated training set of requests and expected noncompliant responses. Our experiments demonstrate that while direct finetuning of instruction-tuned models can lead to both over-refusal and a decline in general capabilities, using parameter efficient methods like low rank adapters helps to strike a good balance between appropriate noncompliance and other capabilities.
Learning to rumble: Automated elephant call classification, detection and endpointing using deep architectures
We consider the problem of detecting, isolating and classifying elephant calls in continuously recorded audio. Such automatic call characterisation can assist conservation efforts and inform environmental management strategies. In contrast to previous work in which call detection was performed at a segment level, we perform call detection at a frame level which implicitly also allows call endpointing, the isolation of a call in a longer recording. For experimentation, we employ two annotated datasets, one containing Asian and the other African elephant vocalisations. We evaluate several shallow and deep classifier models, and show that the current best performance can be improved by using an audio spectrogram transformer (AST), a neural architecture which has not been used for this purpose before, and which we have configured in a novel sequence-to-sequence manner. We also show that using transfer learning by pre-training leads to further improvements both in terms of computational complexity and performance. Finally, we consider sub-call classification using an accepted taxonomy of call types, a task which has not previously been considered. We show that also in this case the transformer architectures provide the best performance. Our best classifiers achieve an average precision (AP) of 0.962 for framewise binary call classification, and an area under the receiver operating characteristic (AUC) of 0.957 and 0.979 for call classification with 5 classes and sub-call classification with 7 classes respectively. All of these represent either new benchmarks (sub-call classifications) or improvements on previously best systems. We conclude that a fully-automated elephant call detection and subcall classification system is within reach. Such a system would provide valuable information on the behaviour and state of elephant herds for the purposes of conservation and management.
Priority prediction of Asian Hornet sighting report using machine learning methods
As infamous invaders to the North American ecosystem, the Asian giant hornet (Vespa mandarinia) is devastating not only to native bee colonies, but also to local apiculture. One of the most effective way to combat the harmful species is to locate and destroy their nests. By mobilizing the public to actively report possible sightings of the Asian giant hornet, the governmentcould timely send inspectors to confirm and possibly destroy the nests. However, such confirmation requires lab expertise, where manually checking the reports one by one is extremely consuming of human resources. Further given the limited knowledge of the public about the Asian giant hornet and the randomness of report submission, only few of the numerous reports proved positive, i.e. existing nests. How to classify or prioritize the reports efficiently and automatically, so as to determine the dispatch of personnel, is of great significance to the control of the Asian giant hornet. In this paper, we propose a method to predict the priority of sighting reports based on machine learning. We model the problem of optimal prioritization of sighting reports as a problem of classification and prediction. We extracted a variety of rich features in the report: location, time, image(s), and textual description. Based on these characteristics, we propose a classification model based on logistic regression to predict the credibility of a certain report. Furthermore, our model quantifies the impact between reports to get the priority ranking of the reports. Extensive experiments on the public dataset from the WSDA (the Washington State Department of Agriculture) have proved the effectiveness of our method.
A Search Engine for Discovery of Scientific Challenges and Directions
Keeping track of scientific challenges, advances and emerging directions is a fundamental part of research. However, researchers face a flood of papers that hinders discovery of important knowledge. In biomedicine, this directly impacts human lives. To address this problem, we present a novel task of extraction and search of scientific challenges and directions, to facilitate rapid knowledge discovery. We construct and release an expert-annotated corpus of texts sampled from full-length papers, labeled with novel semantic categories that generalize across many types of challenges and directions. We focus on a large corpus of interdisciplinary work relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI and economics. We apply a model trained on our data to identify challenges and directions across the corpus and build a dedicated search engine. In experiments with 19 researchers and clinicians using our system, we outperform a popular scientific search engine in assisting knowledge discovery. Finally, we show that models trained on our resource generalize to the wider biomedical domain and to AI papers, highlighting its broad utility. We make our data, model and search engine publicly available. https://challenges.apps.allenai.org/
Taxonomy and Survey on Remote Human Input Systems for Driving Automation Systems
Corner cases for driving automation systems can often be detected by the system itself and subsequently resolved by remote humans. There exists a wide variety of technical approaches on how remote humans can resolve such issues. Over multiple domains, no common taxonomy on those approaches has developed yet, though. As the scaling of automated driving systems continues to increase, a uniform taxonomy is desirable to improve communication within the scientific community, but also beyond to policymakers and the general public. In this paper, we provide a survey on recent terminologies and propose a taxonomy for remote human input systems, classifying the different approaches based on their complexity.
Bugs in Large Language Models Generated Code: An Empirical Study
Large Language Models (LLMs) for code have gained significant attention recently. They can generate code in different programming languages based on provided prompts, fulfilling a long-lasting dream in Software Engineering (SE), i.e., automatic code generation. Similar to human-written code, LLM-generated code is prone to bugs, and these bugs have not yet been thoroughly examined by the community. Given the increasing adoption of LLM-based code generation tools (e.g., GitHub Copilot) in SE activities, it is critical to understand the characteristics of bugs contained in code generated by LLMs. This paper examines a sample of 333 bugs collected from code generated using three leading LLMs (i.e., CodeGen, PanGu-Coder, and Codex) and identifies the following 10 distinctive bug patterns: Misinterpretations, Syntax Error, Silly Mistake, Prompt-biased code, Missing Corner Case, Wrong Input Type, Hallucinated Object, Wrong Attribute, Incomplete Generation, and Non-Prompted Consideration. The bug patterns are presented in the form of a taxonomy. The identified bug patterns are validated using an online survey with 34 LLM practitioners and researchers. The surveyed participants generally asserted the significance and prevalence of the bug patterns. Researchers and practitioners can leverage these findings to develop effective quality assurance techniques for LLM-generated code. This study sheds light on the distinctive characteristics of LLM-generated code.
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time, while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.
Building astroBERT, a language model for Astronomy & Astrophysics
The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned.
Semantic Role Labeling: A Systematical Survey
Semantic role labeling (SRL) is a central natural language processing (NLP) task aiming to understand the semantic roles within texts, facilitating a wide range of downstream applications. While SRL has garnered extensive and enduring research, there is currently a lack of a comprehensive survey that thoroughly organizes and synthesizes the field. This paper aims to review the entire research trajectory of the SRL community over the past two decades. We begin by providing a complete definition of SRL. To offer a comprehensive taxonomy, we categorize SRL methodologies into four key perspectives: model architectures, syntax feature modeling, application scenarios, and multi-modal extensions. Further, we discuss SRL benchmarks, evaluation metrics, and paradigm modeling approaches, while also exploring practical applications across various domains. Finally, we analyze future research directions in SRL, addressing the evolving role of SRL in the age of large language models (LLMs) and its potential impact on the broader NLP landscape. We maintain a public repository and consistently update related resources at: https://github.com/DreamH1gh/Awesome-SRL
The Prompt Report: A Systematic Survey of Prompting Techniques
Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
Event-driven Real-time Retrieval in Web Search
Information retrieval in real-time search presents unique challenges distinct from those encountered in classical web search. These challenges are particularly pronounced due to the rapid change of user search intent, which is influenced by the occurrence and evolution of breaking news events, such as earthquakes, elections, and wars. Previous dense retrieval methods, which primarily focused on static semantic representation, lack the capacity to capture immediate search intent, leading to inferior performance in retrieving the most recent event-related documents in time-sensitive scenarios. To address this issue, this paper expands the query with event information that represents real-time search intent. The Event information is then integrated with the query through a cross-attention mechanism, resulting in a time-context query representation. We further enhance the model's capacity for event representation through multi-task training. Since publicly available datasets such as MS-MARCO do not contain any event information on the query side and have few time-sensitive queries, we design an automatic data collection and annotation pipeline to address this issue, which includes ModelZoo-based Coarse Annotation and LLM-driven Fine Annotation processes. In addition, we share the training tricks such as two-stage training and hard negative sampling. Finally, we conduct a set of offline experiments on a million-scale production dataset to evaluate our approach and deploy an A/B testing in a real online system to verify the performance. Extensive experimental results demonstrate that our proposed approach significantly outperforms existing state-of-the-art baseline methods.
Personalization of Large Language Models: A Survey
Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications. Despite the importance and recent progress, most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems. In this work, we bridge the gap between these two separate main directions for the first time by introducing a taxonomy for personalized LLM usage and summarizing the key differences and challenges. We provide a formalization of the foundations of personalized LLMs that consolidates and expands notions of personalization of LLMs, defining and discussing novel facets of personalization, usage, and desiderata of personalized LLMs. We then unify the literature across these diverse fields and usage scenarios by proposing systematic taxonomies for the granularity of personalization, personalization techniques, datasets, evaluation methods, and applications of personalized LLMs. Finally, we highlight challenges and important open problems that remain to be addressed. By unifying and surveying recent research using the proposed taxonomies, we aim to provide a clear guide to the existing literature and different facets of personalization in LLMs, empowering both researchers and practitioners.
Do I look like a `cat.n.01` to you? A Taxonomy Image Generation Benchmark
This paper explores the feasibility of using text-to-image models in a zero-shot setup to generate images for taxonomy concepts. While text-based methods for taxonomy enrichment are well-established, the potential of the visual dimension remains unexplored. To address this, we propose a comprehensive benchmark for Taxonomy Image Generation that assesses models' abilities to understand taxonomy concepts and generate relevant, high-quality images. The benchmark includes common-sense and randomly sampled WordNet concepts, alongside the LLM generated predictions. The 12 models are evaluated using 9 novel taxonomy-related text-to-image metrics and human feedback. Moreover, we pioneer the use of pairwise evaluation with GPT-4 feedback for image generation. Experimental results show that the ranking of models differs significantly from standard T2I tasks. Playground-v2 and FLUX consistently outperform across metrics and subsets and the retrieval-based approach performs poorly. These findings highlight the potential for automating the curation of structured data resources.
EmoMent: An Emotion Annotated Mental Health Corpus from two South Asian Countries
People often utilise online media (e.g., Facebook, Reddit) as a platform to express their psychological distress and seek support. State-of-the-art NLP techniques demonstrate strong potential to automatically detect mental health issues from text. Research suggests that mental health issues are reflected in emotions (e.g., sadness) indicated in a person's choice of language. Therefore, we developed a novel emotion-annotated mental health corpus (EmoMent), consisting of 2802 Facebook posts (14845 sentences) extracted from two South Asian countries - Sri Lanka and India. Three clinical psychology postgraduates were involved in annotating these posts into eight categories, including 'mental illness' (e.g., depression) and emotions (e.g., 'sadness', 'anger'). EmoMent corpus achieved 'very good' inter-annotator agreement of 98.3% (i.e. % with two or more agreement) and Fleiss' Kappa of 0.82. Our RoBERTa based models achieved an F1 score of 0.76 and a macro-averaged F1 score of 0.77 for the first task (i.e. predicting a mental health condition from a post) and the second task (i.e. extent of association of relevant posts with the categories defined in our taxonomy), respectively.
Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning
Creating knowledge bases and ontologies is a time consuming task that relies on a manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrary complex nested knowledge schemas. Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning (ZSL) and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against GPT-3+ to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for all matched elements. We present examples of use of SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease causation graphs. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction (RE) methods, but has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt.
AnnoCTR: A Dataset for Detecting and Linking Entities, Tactics, and Techniques in Cyber Threat Reports
Monitoring the threat landscape to be aware of actual or potential attacks is of utmost importance to cybersecurity professionals. Information about cyber threats is typically distributed using natural language reports. Natural language processing can help with managing this large amount of unstructured information, yet to date, the topic has received little attention. With this paper, we present AnnoCTR, a new CC-BY-SA-licensed dataset of cyber threat reports. The reports have been annotated by a domain expert with named entities, temporal expressions, and cybersecurity-specific concepts including implicitly mentioned techniques and tactics. Entities and concepts are linked to Wikipedia and the MITRE ATT&CK knowledge base, the most widely-used taxonomy for classifying types of attacks. Prior datasets linking to MITRE ATT&CK either provide a single label per document or annotate sentences out-of-context; our dataset annotates entire documents in a much finer-grained way. In an experimental study, we model the annotations of our dataset using state-of-the-art neural models. In our few-shot scenario, we find that for identifying the MITRE ATT&CK concepts that are mentioned explicitly or implicitly in a text, concept descriptions from MITRE ATT&CK are an effective source for training data augmentation.
What Does My QA Model Know? Devising Controlled Probes using Expert Knowledge
Open-domain question answering (QA) is known to involve several underlying knowledge and reasoning challenges, but are models actually learning such knowledge when trained on benchmark tasks? To investigate this, we introduce several new challenge tasks that probe whether state-of-the-art QA models have general knowledge about word definitions and general taxonomic reasoning, both of which are fundamental to more complex forms of reasoning and are widespread in benchmark datasets. As an alternative to expensive crowd-sourcing, we introduce a methodology for automatically building datasets from various types of expert knowledge (e.g., knowledge graphs and lexical taxonomies), allowing for systematic control over the resulting probes and for a more comprehensive evaluation. We find automatically constructing probes to be vulnerable to annotation artifacts, which we carefully control for. Our evaluation confirms that transformer-based QA models are already predisposed to recognize certain types of structural lexical knowledge. However, it also reveals a more nuanced picture: their performance degrades substantially with even a slight increase in the number of hops in the underlying taxonomic hierarchy, or as more challenging distractor candidate answers are introduced. Further, even when these models succeed at the standard instance-level evaluation, they leave much room for improvement when assessed at the level of clusters of semantically connected probes (e.g., all Isa questions about a concept).
Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP
Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.
Introducing v0.5 of the AI Safety Benchmark from MLCommons
This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.
Using Language Models to Detect Alarming Student Responses
This article details the advances made to a system that uses artificial intelligence to identify alarming student responses. This system is built into our assessment platform to assess whether a student's response indicates they are a threat to themselves or others. Such responses may include details concerning threats of violence, severe depression, suicide risks, and descriptions of abuse. Driven by advances in natural language processing, the latest model is a fine-tuned language model trained on a large corpus consisting of student responses and supplementary texts. We demonstrate that the use of a language model delivers a substantial improvement in accuracy over the previous iterations of this system.
SOLID: A Large-Scale Semi-Supervised Dataset for Offensive Language Identification
The widespread use of offensive content in social media has led to an abundance of research in detecting language such as hate speech, cyberbullying, and cyber-aggression. Recent work presented the OLID dataset, which follows a taxonomy for offensive language identification that provides meaningful information for understanding the type and the target of offensive messages. However, it is limited in size and it might be biased towards offensive language as it was collected using keywords. In this work, we present SOLID, an expanded dataset, where the tweets were collected in a more principled manner. SOLID contains over nine million English tweets labeled in a semi-supervised fashion. We demonstrate that using SOLID along with OLID yields sizable performance gains on the OLID test set for two different models, especially for the lower levels of the taxonomy.
A Taxonomy of Architecture Options for Foundation Model-based Agents: Analysis and Decision Model
The rapid advancement of AI technology has led to widespread applications of agent systems across various domains. However, the need for detailed architecture design poses significant challenges in designing and operating these systems. This paper introduces a taxonomy focused on the architectures of foundation-model-based agents, addressing critical aspects such as functional capabilities and non-functional qualities. We also discuss the operations involved in both design-time and run-time phases, providing a comprehensive view of architectural design and operational characteristics. By unifying and detailing these classifications, our taxonomy aims to improve the design of foundation-model-based agents. Additionally, the paper establishes a decision model that guides critical design and runtime decisions, offering a structured approach to enhance the development of foundation-model-based agents. Our contributions include providing a structured architecture design option and guiding the development process of foundation-model-based agents, thereby addressing current fragmentation in the field.
Don't Classify, Translate: Multi-Level E-Commerce Product Categorization Via Machine Translation
E-commerce platforms categorize their products into a multi-level taxonomy tree with thousands of leaf categories. Conventional methods for product categorization are typically based on machine learning classification algorithms. These algorithms take product information as input (e.g., titles and descriptions) to classify a product into a leaf category. In this paper, we propose a new paradigm based on machine translation. In our approach, we translate a product's natural language description into a sequence of tokens representing a root-to-leaf path in a product taxonomy. In our experiments on two large real-world datasets, we show that our approach achieves better predictive accuracy than a state-of-the-art classification system for product categorization. In addition, we demonstrate that our machine translation models can propose meaningful new paths between previously unconnected nodes in a taxonomy tree, thereby transforming the taxonomy into a directed acyclic graph (DAG). We discuss how the resultant taxonomy DAG promotes user-friendly navigation, and how it is more adaptable to new products.
Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope.
Incidents1M: a large-scale dataset of images with natural disasters, damage, and incidents
Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events. Fortunately, technology can play a role in these situations. Social media posts can be used as a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated methods. Prior work has mostly focused on text-based filtering, yet image and video-based filtering remains largely unexplored. In this work, we present the Incidents1M Dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49 place categories. We provide details of the dataset construction, statistics and potential biases; introduce and train a model for incident detection; and perform image-filtering experiments on millions of images on Flickr and Twitter. We also present some applications on incident analysis to encourage and enable future work in computer vision for humanitarian aid. Code, data, and models are available at http://incidentsdataset.csail.mit.edu.
LLM-Powered GUI Agents in Phone Automation: Surveying Progress and Prospects
With the rapid rise of large language models (LLMs), phone automation has undergone transformative changes. This paper systematically reviews LLM-driven phone GUI agents, highlighting their evolution from script-based automation to intelligent, adaptive systems. We first contextualize key challenges, (i) limited generality, (ii) high maintenance overhead, and (iii) weak intent comprehension, and show how LLMs address these issues through advanced language understanding, multimodal perception, and robust decision-making. We then propose a taxonomy covering fundamental agent frameworks (single-agent, multi-agent, plan-then-act), modeling approaches (prompt engineering, training-based), and essential datasets and benchmarks. Furthermore, we detail task-specific architectures, supervised fine-tuning, and reinforcement learning strategies that bridge user intent and GUI operations. Finally, we discuss open challenges such as dataset diversity, on-device deployment efficiency, user-centric adaptation, and security concerns, offering forward-looking insights into this rapidly evolving field. By providing a structured overview and identifying pressing research gaps, this paper serves as a definitive reference for researchers and practitioners seeking to harness LLMs in designing scalable, user-friendly phone GUI agents.
The Tiny Time-series Transformer: Low-latency High-throughput Classification of Astronomical Transients using Deep Model Compression
A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for time-domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art deep learning architectures coupled with tools that leverage modern hardware accelerators are essential. We showcase how the use of modern deep compression methods can achieve a 18times reduction in model size, whilst preserving classification performance. We also show that in addition to the deep compression techniques, careful choice of file formats can improve inference latency, and thereby throughput of alerts, on the order of 8times for local processing, and 5times in a live production setting. To test this in a live setting, we deploy this optimised version of the original time-series transformer, t2, into the community alert broking system of FINK on real Zwicky Transient Facility (ZTF) alert data, and compare throughput performance with other science modules that exist in FINK. The results shown herein emphasise the time-series transformer's suitability for real-time classification at LSST scale, and beyond, and introduce deep model compression as a fundamental tool for improving deploy-ability and scalable inference of deep learning models for transient classification.
TartuNLP at SemEval-2025 Task 5: Subject Tagging as Two-Stage Information Retrieval
We present our submission to the Task 5 of SemEval-2025 that aims to aid librarians in assigning subject tags to the library records by producing a list of likely relevant tags for a given document. We frame the task as an information retrieval problem, where the document content is used to retrieve subject tags from a large subject taxonomy. We leverage two types of encoder models to build a two-stage information retrieval system -- a bi-encoder for coarse-grained candidate extraction at the first stage, and a cross-encoder for fine-grained re-ranking at the second stage. This approach proved effective, demonstrating significant improvements in recall compared to single-stage methods and showing competitive results according to qualitative evaluation.
PromptPrism: A Linguistically-Inspired Taxonomy for Prompts
Prompts are the interface for eliciting the capabilities of large language models (LLMs). Understanding their structure and components is critical for analyzing LLM behavior and optimizing performance. However, the field lacks a comprehensive framework for systematic prompt analysis and understanding. We introduce PromptPrism, a linguistically-inspired taxonomy that enables prompt analysis across three hierarchical levels: functional structure, semantic component, and syntactic pattern. We show the practical utility of PromptPrism by applying it to three applications: (1) a taxonomy-guided prompt refinement approach that automatically improves prompt quality and enhances model performance across a range of tasks; (2) a multi-dimensional dataset profiling method that extracts and aggregates structural, semantic, and syntactic characteristics from prompt datasets, enabling comprehensive analysis of prompt distributions and patterns; (3) a controlled experimental framework for prompt sensitivity analysis by quantifying the impact of semantic reordering and delimiter modifications on LLM performance. Our experimental results validate the effectiveness of our taxonomy across these applications, demonstrating that PromptPrism provides a foundation for refining, profiling, and analyzing prompts.
Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation
Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at https://github.com/EQTPartners/PTEC.
Can this Model Also Recognize Dogs? Zero-Shot Model Search from Weights
With the increasing numbers of publicly available models, there are probably pretrained, online models for most tasks users require. However, current model search methods are rudimentary, essentially a text-based search in the documentation, thus users cannot find the relevant models. This paper presents ProbeLog, a method for retrieving classification models that can recognize a target concept, such as "Dog", without access to model metadata or training data. Differently from previous probing methods, ProbeLog computes a descriptor for each output dimension (logit) of each model, by observing its responses on a fixed set of inputs (probes). Our method supports both logit-based retrieval ("find more logits like this") and zero-shot, text-based retrieval ("find all logits corresponding to dogs"). As probing-based representations require multiple costly feedforward passes through the model, we develop a method, based on collaborative filtering, that reduces the cost of encoding repositories by 3x. We demonstrate that ProbeLog achieves high retrieval accuracy, both in real-world and fine-grained search tasks and is scalable to full-size repositories.
Towards AI-Safety-by-Design: A Taxonomy of Runtime Guardrails in Foundation Model based Systems
The rapid advancement and widespread deployment of foundation model (FM) based systems have revolutionized numerous applications across various domains. However, the fast-growing capabilities and autonomy have also raised significant concerns about responsible AI and AI safety. Recently, there have been increasing attention toward implementing guardrails to ensure the runtime behavior of FM-based systems is safe and responsible. Given the early stage of FMs and their applications (such as agents), the design of guardrails have not yet been systematically studied. It remains underexplored which software qualities should be considered when designing guardrails and how these qualities can be ensured from a software architecture perspective. Therefore, in this paper, we present a taxonomy for guardrails to classify and compare the characteristics and design options of guardrails. Our taxonomy is organized into three main categories: the motivation behind adopting runtime guardrails, the quality attributes to consider, and the design options available. This taxonomy provides structured and concrete guidance for making architectural design decisions when designing guardrails and highlights trade-offs arising from the design decisions.
From Dissonance to Insights: Dissecting Disagreements in Rationale Construction for Case Outcome Classification
In legal NLP, Case Outcome Classification (COC) must not only be accurate but also trustworthy and explainable. Existing work in explainable COC has been limited to annotations by a single expert. However, it is well-known that lawyers may disagree in their assessment of case facts. We hence collect a novel dataset RAVE: Rationale Variation in ECHR1, which is obtained from two experts in the domain of international human rights law, for whom we observe weak agreement. We study their disagreements and build a two-level task-independent taxonomy, supplemented with COC-specific subcategories. To our knowledge, this is the first work in the legal NLP that focuses on human label variation. We quantitatively assess different taxonomy categories and find that disagreements mainly stem from underspecification of the legal context, which poses challenges given the typically limited granularity and noise in COC metadata. We further assess the explainablility of SOTA COC models on RAVE and observe limited agreement between models and experts. Overall, our case study reveals hitherto underappreciated complexities in creating benchmark datasets in legal NLP that revolve around identifying aspects of a case's facts supposedly relevant to its outcome.
Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
This paper presents a systematic overview and comparison of parameter-efficient fine-tuning methods covering over 40 papers published between February 2019 and February 2023. These methods aim to resolve the infeasibility and impracticality of fine-tuning large language models by only training a small set of parameters. We provide a taxonomy that covers a broad range of methods and present a detailed method comparison with a specific focus on real-life efficiency and fine-tuning multibillion-scale language models.
Artificial intelligence in cyber physical systems
This article conducts a literature review of current and future challenges in the use of artificial intelligence (AI) in cyber physical systems. The literature review is focused on identifying a conceptual framework for increasing resilience with AI through automation supporting both, a technical and human level. The methodology applied resembled a literature review and taxonomic analysis of complex internet of things (IoT) interconnected and coupled cyber physical systems. There is an increased attention on propositions on models, infrastructures and frameworks of IoT in both academic and technical papers. These reports and publications frequently represent a juxtaposition of other related systems and technologies (e.g. Industrial Internet of Things, Cyber Physical Systems, Industry 4.0 etc.). We review academic and industry papers published between 2010 and 2020. The results determine a new hierarchical cascading conceptual framework for analysing the evolution of AI decision-making in cyber physical systems. We argue that such evolution is inevitable and autonomous because of the increased integration of connected devices (IoT) in cyber physical systems. To support this argument, taxonomic methodology is adapted and applied for transparency and justifications of concepts selection decisions through building summary maps that are applied for designing the hierarchical cascading conceptual framework.
Every child should have parents: a taxonomy refinement algorithm based on hyperbolic term embeddings
We introduce the use of Poincar\'e embeddings to improve existing state-of-the-art approaches to domain-specific taxonomy induction from text as a signal for both relocating wrong hyponym terms within a (pre-induced) taxonomy as well as for attaching disconnected terms in a taxonomy. This method substantially improves previous state-of-the-art results on the SemEval-2016 Task 13 on taxonomy extraction. We demonstrate the superiority of Poincar\'e embeddings over distributional semantic representations, supporting the hypothesis that they can better capture hierarchical lexical-semantic relationships than embeddings in the Euclidean space.
Reinventing Clinical Dialogue: Agentic Paradigms for LLM Enabled Healthcare Communication
Clinical dialogue represents a complex duality requiring both the empathetic fluency of natural conversation and the rigorous precision of evidence-based medicine. While Large Language Models possess unprecedented linguistic capabilities, their architectural reliance on reactive and stateless processing often favors probabilistic plausibility over factual veracity. This structural limitation has catalyzed a paradigm shift in medical AI from generative text prediction to agentic autonomy, where the model functions as a central reasoning engine capable of deliberate planning and persistent memory. Moving beyond existing reviews that primarily catalog downstream applications, this survey provides a first-principles analysis of the cognitive architecture underpinning this shift. We introduce a novel taxonomy structured along the orthogonal axes of knowledge source and agency objective to delineate the provenance of clinical knowledge against the system's operational scope. This framework facilitates a systematic analysis of the intrinsic trade-offs between creativity and reliability by categorizing methods into four archetypes: Latent Space Clinicians, Emergent Planners, Grounded Synthesizers, and Verifiable Workflow Automators. For each paradigm, we deconstruct the technical realization across the entire cognitive pipeline, encompassing strategic planning, memory management, action execution, collaboration, and evolution to reveal how distinct architectural choices balance the tension between autonomy and safety.
Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
Artificial Hivemind: The Open-Ended Homogeneity of Language Models (and Beyond)
Language models (LMs) often struggle to generate diverse, human-like creative content, raising concerns about the long-term homogenization of human thought through repeated exposure to similar outputs. Yet scalable methods for evaluating LM output diversity remain limited, especially beyond narrow tasks such as random number or name generation, or beyond repeated sampling from a single model. We introduce Infinity-Chat, a large-scale dataset of 26K diverse, real-world, open-ended user queries that admit a wide range of plausible answers with no single ground truth. We introduce the first comprehensive taxonomy for characterizing the full spectrum of open-ended prompts posed to LMs, comprising 6 top-level categories (e.g., brainstorm & ideation) that further breaks down to 17 subcategories. Using Infinity-Chat, we present a large-scale study of mode collapse in LMs, revealing a pronounced Artificial Hivemind effect in open-ended generation of LMs, characterized by (1) intra-model repetition, where a single model consistently generates similar responses, and more so (2) inter-model homogeneity, where different models produce strikingly similar outputs. Infinity-Chat also includes 31,250 human annotations, across absolute ratings and pairwise preferences, with 25 independent human annotations per example. This enables studying collective and individual-specific human preferences in response to open-ended queries. Our findings show that LMs, reward models, and LM judges are less well calibrated to human ratings on model generations that elicit differing idiosyncratic annotator preferences, despite maintaining comparable overall quality. Overall, INFINITY-CHAT presents the first large-scale resource for systematically studying real-world open-ended queries to LMs, revealing critical insights to guide future research for mitigating long-term AI safety risks posed by the Artificial Hivemind.
Towards Systematic Monolingual NLP Surveys: GenA of Greek NLP
Natural Language Processing (NLP) research has traditionally been predominantly focused on English, driven by the availability of resources, the size of the research community, and market demands. Recently, there has been a noticeable shift towards multilingualism in NLP, recognizing the need for inclusivity and effectiveness across diverse languages and cultures. Monolingual surveys have the potential to complement the broader trend towards multilingualism in NLP by providing foundational insights and resources, necessary for effectively addressing the linguistic diversity of global communication. However, monolingual NLP surveys are extremely rare in the literature. This study introduces a generalizable methodology for creating systematic and comprehensive monolingual NLP surveys, aimed at optimizing the process of constructing such surveys and thoroughly addressing a language's NLP support. Our approach integrates a structured search protocol to avoid selection bias and ensure reproducibility, an NLP task taxonomy to organize the surveyed material coherently, and language resources (LRs) taxonomies to identify potential benchmarks and highlight opportunities for improving resource availability (e.g., through better maintenance or licensing). We apply this methodology to Greek NLP (2012-2023), providing a comprehensive overview of its current state and challenges. We discuss the progress of Greek NLP and outline the Greek LRs found, classified by availability and usability, assessing language support per NLP task. The presented systematic literature review of Greek NLP serves as an application of our method that showcases the benefits of monolingual NLP surveys more broadly. Similar applications could be considered for the myriads of languages whose progress in NLP lags behind that of well-supported languages.
A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications
This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.
A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature
We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.
Pre-trained Models for Natural Language Processing: A Survey
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications
The proliferation of Large Language Models (LLMs) in medicine has enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning, a cornerstone of clinical practice. This has catalyzed a shift from single-step answer generation to the development of LLMs explicitly designed for medical reasoning. This paper provides the first systematic review of this emerging field. We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies (e.g., supervised fine-tuning, reinforcement learning) and test-time mechanisms (e.g., prompt engineering, multi-agent systems). We analyze how these techniques are applied across different data modalities (text, image, code) and in key clinical applications such as diagnosis, education, and treatment planning. Furthermore, we survey the evolution of evaluation benchmarks from simple accuracy metrics to sophisticated assessments of reasoning quality and visual interpretability. Based on an analysis of 60 seminal studies from 2022-2025, we conclude by identifying critical challenges, including the faithfulness-plausibility gap and the need for native multimodal reasoning, and outlining future directions toward building efficient, robust, and sociotechnically responsible medical AI.
NER-Luxury: Named entity recognition for the fashion and luxury domain
In this study, we address multiple challenges of developing a named-entity recognition model in English for the fashion and luxury industry, namely the entity disambiguation, French technical jargon in multiple sub-sectors, scarcity of the ESG methodology, and a disparate company structures of the sector with small and medium-sized luxury houses to large conglomerate leveraging economy of scale. In this work, we introduce a taxonomy of 36+ entity types with a luxury-oriented annotation scheme, and create a dataset of more than 40K sentences respecting a clear hierarchical classification. We also present five supervised fine-tuned models NER-Luxury for fashion, beauty, watches, jewelry, fragrances, cosmetics, and overall luxury, focusing equally on the aesthetic side and the quantitative side. In an additional experiment, we compare in a quantitative empirical assessment of the NER performance of our models against the state-of-the-art open-source large language models that show promising results and highlights the benefits of incorporating a bespoke NER model in existing machine learning pipelines.
A Survey on Hypothesis Generation for Scientific Discovery in the Era of Large Language Models
Hypothesis generation is a fundamental step in scientific discovery, yet it is increasingly challenged by information overload and disciplinary fragmentation. Recent advances in Large Language Models (LLMs) have sparked growing interest in their potential to enhance and automate this process. This paper presents a comprehensive survey of hypothesis generation with LLMs by (i) reviewing existing methods, from simple prompting techniques to more complex frameworks, and proposing a taxonomy that categorizes these approaches; (ii) analyzing techniques for improving hypothesis quality, such as novelty boosting and structured reasoning; (iii) providing an overview of evaluation strategies; and (iv) discussing key challenges and future directions, including multimodal integration and human-AI collaboration. Our survey aims to serve as a reference for researchers exploring LLMs for hypothesis generation.
Topologies of Reasoning: Demystifying Chains, Trees, and Graphs of Thoughts
The field of natural language processing (NLP) has witnessed significant progress in recent years, with a notable focus on improving large language models' (LLM) performance through innovative prompting techniques. Among these, prompt engineering coupled with structures has emerged as a promising paradigm, with designs such as Chain-of-Thought, Tree of Thoughts, or Graph of Thoughts, in which the overall LLM reasoning is guided by a structure such as a graph. As illustrated with numerous examples, this paradigm significantly enhances the LLM's capability to solve numerous tasks, ranging from logical or mathematical reasoning to planning or creative writing. To facilitate the understanding of this growing field and pave the way for future developments, we devise a general blueprint for effective and efficient LLM reasoning schemes. For this, we conduct an in-depth analysis of the prompt execution pipeline, clarifying and clearly defining different concepts. We then build the first taxonomy of structure-enhanced LLM reasoning schemes. We focus on identifying fundamental classes of harnessed structures, and we analyze the representations of these structures, algorithms executed with these structures, and many others. We refer to these structures as reasoning topologies, because their representation becomes to a degree spatial, as they are contained within the LLM context. Our study compares existing prompting schemes using the proposed taxonomy, discussing how certain design choices lead to different patterns in performance and cost. We also outline theoretical underpinnings, relationships between prompting and others parts of the LLM ecosystem such as knowledge bases, and the associated research challenges. Our work will help to advance future prompt engineering techniques.
The Spotify Podcast Dataset
Podcasts are a relatively new form of audio media. Episodes appear on a regular cadence, and come in many different formats and levels of formality. They can be formal news journalism or conversational chat; fiction or non-fiction. They are rapidly growing in popularity and yet have been relatively little studied. As an audio format, podcasts are more varied in style and production types than, say, broadcast news, and contain many more genres than typically studied in video research. The medium is therefore a rich domain with many research avenues for the IR and NLP communities. We present the Spotify Podcast Dataset, a set of approximately 100K podcast episodes comprised of raw audio files along with accompanying ASR transcripts. This represents over 47,000 hours of transcribed audio, and is an order of magnitude larger than previous speech-to-text corpora.
Diagnosing Failure Root Causes in Platform-Orchestrated Agentic Systems: Dataset, Taxonomy, and Benchmark
Agentic systems consisting of multiple LLM-driven agents coordinating through tools and structured interactions, are increasingly deployed for complex reasoning and problem-solving tasks. At the same time, emerging low-code and template-based agent development platforms (e.g., Dify) enable users to rapidly build and orchestrate agentic systems, which we refer to as platform-orchestrated agentic systems. However, these systems are also fragile and it remains unclear how to systematically identify their potential failure root cause. This paper presents a study of root cause identification of these platform-orchestrated agentic systems. To support this initiative, we construct a dataset AgentFail containing 307 failure logs from ten agentic systems, each with fine-grained annotations linking failures to their root causes. We additionally utilize counterfactual reasoning-based repair strategy to ensure the reliability of the annotation. Building on the dataset, we develop a taxonomy that characterizes failure root causes and analyze their distribution across different platforms and task domains. Furthermore, we introduce a benchmark that leverages LLMs for automatically identifying root causes, in which we also utilize the proposed taxonomy as guidance for LLMs. Results show that the taxonomy can largely improve the performance, thereby confirming its utility. Nevertheless, the accuracy of root cause identification reaches at most 33.6%, which indicates that this task still remains challenging. In light of these results, we also provide actionable guidelines for building such agentic systems. In summary, this paper provides a reliable dataset of failure root cause for platform-orchestrated agentic systems, corresponding taxonomy and benchmark, which serves as a foundation for advancing the development of more reliable agentic systems.
Early warning signals: The charted and uncharted territories
The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.
Language Model Decoding as Likelihood-Utility Alignment
A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of decoding algorithm remain unclear. Previous works only compare decoding algorithms in narrow scenarios and their findings do not generalize across tasks. To better structure the discussion, we introduce a taxonomy that groups decoding strategies based on their implicit assumptions about how well the model's likelihood is aligned with the task-specific notion of utility. We argue that this taxonomy allows a broader view of the decoding problem and can lead to generalizable statements because it is grounded on the interplay between the decoding algorithms and the likelihood-utility misalignment. Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide the first empirical evidence supporting the proposed taxonomy, and a set of principles to structure reasoning when choosing a decoding algorithm. Crucially, our analysis is the first one to relate likelihood-based decoding strategies with strategies that rely on external information such as value-guided methods and prompting, and covers the most diverse set of tasks up-to-date.
Tweets Under the Rubble: Detection of Messages Calling for Help in Earthquake Disaster
The importance of social media is again exposed in the recent tragedy of the 2023 Turkey and Syria earthquake. Many victims who were trapped under the rubble called for help by posting messages in Twitter. We present an interactive tool to provide situational awareness for missing and trapped people, and disaster relief for rescue and donation efforts. The system (i) collects tweets, (ii) classifies the ones calling for help, (iii) extracts important entity tags, and (iv) visualizes them in an interactive map screen. Our initial experiments show that the performance in terms of the F1 score is up to 98.30 for tweet classification, and 84.32 for entity extraction. The demonstration, dataset, and other related files can be accessed at https://github.com/avaapm/deprem
SmartWilds: Multimodal Wildlife Monitoring Dataset
We present the first release of SmartWilds, a multimodal wildlife monitoring dataset. SmartWilds is a synchronized collection of drone imagery, camera trap photographs and videos, and bioacoustic recordings collected during summer 2025 at The Wilds safari park in Ohio. This dataset supports multimodal AI research for comprehensive environmental monitoring, addressing critical needs in endangered species research, conservation ecology, and habitat management. Our pilot deployment captured four days of synchronized monitoring across three modalities in a 220-acre pasture containing Pere David's deer, Sichuan takin, Przewalski's horses, as well as species native to Ohio, including bald eagles, white-tailed deer, and coyotes. We provide a comparative analysis of sensor modality performance, demonstrating complementary strengths for landuse patterns, species detection, behavioral analysis, and habitat monitoring. This work establishes reproducible protocols for multimodal wildlife monitoring while contributing open datasets to advance conservation computer vision research. Future releases will include synchronized GPS tracking data from tagged individuals, citizen science data, and expanded temporal coverage across multiple seasons.
Synergizing Unsupervised Episode Detection with LLMs for Large-Scale News Events
State-of-the-art automatic event detection struggles with interpretability and adaptability to evolving large-scale key events -- unlike episodic structures, which excel in these areas. Often overlooked, episodes represent cohesive clusters of core entities performing actions at a specific time and location; a partially ordered sequence of episodes can represent a key event. This paper introduces a novel task, episode detection, which identifies episodes within a news corpus of key event articles. Detecting episodes poses unique challenges, as they lack explicit temporal or locational markers and cannot be merged using semantic similarity alone. While large language models (LLMs) can aid with these reasoning difficulties, they suffer with long contexts typical of news corpora. To address these challenges, we introduce EpiMine, an unsupervised framework that identifies a key event's candidate episodes by leveraging natural episodic partitions in articles, estimated through shifts in discriminative term combinations. These candidate episodes are more cohesive and representative of true episodes, synergizing with LLMs to better interpret and refine them into final episodes. We apply EpiMine to our three diverse, real-world event datasets annotated at the episode level, where it achieves a 59.2% average gain across all metrics compared to baselines.
MALADE: Orchestration of LLM-powered Agents with Retrieval Augmented Generation for Pharmacovigilance
In the era of Large Language Models (LLMs), given their remarkable text understanding and generation abilities, there is an unprecedented opportunity to develop new, LLM-based methods for trustworthy medical knowledge synthesis, extraction and summarization. This paper focuses on the problem of Pharmacovigilance (PhV), where the significance and challenges lie in identifying Adverse Drug Events (ADEs) from diverse text sources, such as medical literature, clinical notes, and drug labels. Unfortunately, this task is hindered by factors including variations in the terminologies of drugs and outcomes, and ADE descriptions often being buried in large amounts of narrative text. We present MALADE, the first effective collaborative multi-agent system powered by LLM with Retrieval Augmented Generation for ADE extraction from drug label data. This technique involves augmenting a query to an LLM with relevant information extracted from text resources, and instructing the LLM to compose a response consistent with the augmented data. MALADE is a general LLM-agnostic architecture, and its unique capabilities are: (1) leveraging a variety of external sources, such as medical literature, drug labels, and FDA tools (e.g., OpenFDA drug information API), (2) extracting drug-outcome association in a structured format along with the strength of the association, and (3) providing explanations for established associations. Instantiated with GPT-4 Turbo or GPT-4o, and FDA drug label data, MALADE demonstrates its efficacy with an Area Under ROC Curve of 0.90 against the OMOP Ground Truth table of ADEs. Our implementation leverages the Langroid multi-agent LLM framework and can be found at https://github.com/jihyechoi77/malade.
Review of Natural Language Processing in Pharmacology
Natural language processing (NLP) is an area of artificial intelligence that applies information technologies to process the human language, understand it to a certain degree, and use it in various applications. This area has rapidly developed in the last few years and now employs modern variants of deep neural networks to extract relevant patterns from large text corpora. The main objective of this work is to survey the recent use of NLP in the field of pharmacology. As our work shows, NLP is a highly relevant information extraction and processing approach for pharmacology. It has been used extensively, from intelligent searches through thousands of medical documents to finding traces of adversarial drug interactions in social media. We split our coverage into five categories to survey modern NLP methodology, commonly addressed tasks, relevant textual data, knowledge bases, and useful programming libraries. We split each of the five categories into appropriate subcategories, describe their main properties and ideas, and summarize them in a tabular form. The resulting survey presents a comprehensive overview of the area, useful to practitioners and interested observers.
Discovering the Hidden Vocabulary of DALLE-2
We discover that DALLE-2 seems to have a hidden vocabulary that can be used to generate images with absurd prompts. For example, it seems that Apoploe vesrreaitais means birds and Contarra ccetnxniams luryca tanniounons (sometimes) means bugs or pests. We find that these prompts are often consistent in isolation but also sometimes in combinations. We present our black-box method to discover words that seem random but have some correspondence to visual concepts. This creates important security and interpretability challenges.
An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction
Task-oriented dialog systems need to know when a query falls outside their range of supported intents, but current text classification corpora only define label sets that cover every example. We introduce a new dataset that includes queries that are out-of-scope---i.e., queries that do not fall into any of the system's supported intents. This poses a new challenge because models cannot assume that every query at inference time belongs to a system-supported intent class. Our dataset also covers 150 intent classes over 10 domains, capturing the breadth that a production task-oriented agent must handle. We evaluate a range of benchmark classifiers on our dataset along with several different out-of-scope identification schemes. We find that while the classifiers perform well on in-scope intent classification, they struggle to identify out-of-scope queries. Our dataset and evaluation fill an important gap in the field, offering a way of more rigorously and realistically benchmarking text classification in task-driven dialog systems.
Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company's Reputation
Not all topics are equally "flammable" in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labeling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labeled dataset and an appropriateness-labeled dataset. We also release pre-trained classification models trained on this data.
Beyond Labels: Leveraging Deep Learning and LLMs for Content Metadata
Content metadata plays a very important role in movie recommender systems as it provides valuable information about various aspects of a movie such as genre, cast, plot synopsis, box office summary, etc. Analyzing the metadata can help understand the user preferences to generate personalized recommendations and item cold starting. In this talk, we will focus on one particular type of metadata - genre labels. Genre labels associated with a movie or a TV series help categorize a collection of titles into different themes and correspondingly setting up the audience expectation. We present some of the challenges associated with using genre label information and propose a new way of examining the genre information that we call as the Genre Spectrum. The Genre Spectrum helps capture the various nuanced genres in a title and our offline and online experiments corroborate the effectiveness of the approach. Furthermore, we also talk about applications of LLMs in augmenting content metadata which could eventually be used to achieve effective organization of recommendations in user's 2-D home-grid.
Pre-trained Language Models in Biomedical Domain: A Systematic Survey
Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.
Toxic Language Detection in Social Media for Brazilian Portuguese: New Dataset and Multilingual Analysis
Hate speech and toxic comments are a common concern of social media platform users. Although these comments are, fortunately, the minority in these platforms, they are still capable of causing harm. Therefore, identifying these comments is an important task for studying and preventing the proliferation of toxicity in social media. Previous work in automatically detecting toxic comments focus mainly in English, with very few work in languages like Brazilian Portuguese. In this paper, we propose a new large-scale dataset for Brazilian Portuguese with tweets annotated as either toxic or non-toxic or in different types of toxicity. We present our dataset collection and annotation process, where we aimed to select candidates covering multiple demographic groups. State-of-the-art BERT models were able to achieve 76% macro-F1 score using monolingual data in the binary case. We also show that large-scale monolingual data is still needed to create more accurate models, despite recent advances in multilingual approaches. An error analysis and experiments with multi-label classification show the difficulty of classifying certain types of toxic comments that appear less frequently in our data and highlights the need to develop models that are aware of different categories of toxicity.
HunFlair: An Easy-to-Use Tool for State-of-the-Art Biomedical Named Entity Recognition
Summary: Named Entity Recognition (NER) is an important step in biomedical information extraction pipelines. Tools for NER should be easy to use, cover multiple entity types, highly accurate, and robust towards variations in text genre and style. To this end, we propose HunFlair, an NER tagger covering multiple entity types integrated into the widely used NLP framework Flair. HunFlair outperforms other state-of-the-art standalone NER tools with an average gain of 7.26 pp over the next best tool, can be installed with a single command and is applied with only four lines of code. Availability: HunFlair is freely available through the Flair framework under an MIT license: https://github.com/flairNLP/flair and is compatible with all major operating systems. Contact:{weberple,saengema,alan.akbik}@informatik.hu-berlin.de
Protect: Towards Robust Guardrailing Stack for Trustworthy Enterprise LLM Systems
The increasing deployment of Large Language Models (LLMs) across enterprise and mission-critical domains has underscored the urgent need for robust guardrailing systems that ensure safety, reliability, and compliance. Existing solutions often struggle with real-time oversight, multi-modal data handling, and explainability -- limitations that hinder their adoption in regulated environments. Existing guardrails largely operate in isolation, focused on text alone making them inadequate for multi-modal, production-scale environments. We introduce Protect, natively multi-modal guardrailing model designed to operate seamlessly across text, image, and audio inputs, designed for enterprise-grade deployment. Protect integrates fine-tuned, category-specific adapters trained via Low-Rank Adaptation (LoRA) on an extensive, multi-modal dataset covering four safety dimensions: toxicity, sexism, data privacy, and prompt injection. Our teacher-assisted annotation pipeline leverages reasoning and explanation traces to generate high-fidelity, context-aware labels across modalities. Experimental results demonstrate state-of-the-art performance across all safety dimensions, surpassing existing open and proprietary models such as WildGuard, LlamaGuard-4, and GPT-4.1. Protect establishes a strong foundation for trustworthy, auditable, and production-ready safety systems capable of operating across text, image, and audio modalities.
TWEET-FID: An Annotated Dataset for Multiple Foodborne Illness Detection Tasks
Foodborne illness is a serious but preventable public health problem -- with delays in detecting the associated outbreaks resulting in productivity loss, expensive recalls, public safety hazards, and even loss of life. While social media is a promising source for identifying unreported foodborne illnesses, there is a dearth of labeled datasets for developing effective outbreak detection models. To accelerate the development of machine learning-based models for foodborne outbreak detection, we thus present TWEET-FID (TWEET-Foodborne Illness Detection), the first publicly available annotated dataset for multiple foodborne illness incident detection tasks. TWEET-FID collected from Twitter is annotated with three facets: tweet class, entity type, and slot type, with labels produced by experts as well as by crowdsource workers. We introduce several domain tasks leveraging these three facets: text relevance classification (TRC), entity mention detection (EMD), and slot filling (SF). We describe the end-to-end methodology for dataset design, creation, and labeling for supporting model development for these tasks. A comprehensive set of results for these tasks leveraging state-of-the-art single- and multi-task deep learning methods on the TWEET-FID dataset are provided. This dataset opens opportunities for future research in foodborne outbreak detection.
K-12BERT: BERT for K-12 education
Online education platforms are powered by various NLP pipelines, which utilize models like BERT to aid in content curation. Since the inception of the pre-trained language models like BERT, there have also been many efforts toward adapting these pre-trained models to specific domains. However, there has not been a model specifically adapted for the education domain (particularly K-12) across subjects to the best of our knowledge. In this work, we propose to train a language model on a corpus of data curated by us across multiple subjects from various sources for K-12 education. We also evaluate our model, K12-BERT, on downstream tasks like hierarchical taxonomy tagging.
Heterogeneous LLM Methods for Ontology Learning (Few-Shot Prompting, Ensemble Typing, and Attention-Based Taxonomies)
We present a comprehensive system for addressing Tasks A, B, and C of the LLMs4OL 2025 challenge, which together span the full ontology construction pipeline: term extraction, typing, and taxonomy discovery. Our approach combines retrieval-augmented prompting, zero-shot classification, and attention-based graph modeling -- each tailored to the demands of the respective task. For Task A, we jointly extract domain-specific terms and their ontological types using a retrieval-augmented generation (RAG) pipeline. Training data was reformulated into a document to terms and types correspondence, while test-time inference leverages semantically similar training examples. This single-pass method requires no model finetuning and improves overall performance through lexical augmentation Task B, which involves assigning types to given terms, is handled via a dual strategy. In the few-shot setting (for domains with labeled training data), we reuse the RAG scheme with few-shot prompting. In the zero-shot setting (for previously unseen domains), we use a zero-shot classifier that combines cosine similarity scores from multiple embedding models using confidence-based weighting. In Task C, we model taxonomy discovery as graph inference. Using embeddings of type labels, we train a lightweight cross-attention layer to predict is-a relations by approximating a soft adjacency matrix. These modular, task-specific solutions enabled us to achieve top-ranking results in the official leaderboard across all three tasks. Taken together these strategies showcase the scalability, adaptability, and robustness of LLM-based architectures for ontology learning across heterogeneous domains. Code is available at: https://github.com/BelyaevaAlex/LLMs4OL-Challenge-Alexbek
YAGO 4.5: A Large and Clean Knowledge Base with a Rich Taxonomy
Knowledge Bases (KBs) find applications in many knowledge-intensive tasks and, most notably, in information retrieval. Wikidata is one of the largest public general-purpose KBs. Yet, its collaborative nature has led to a convoluted schema and taxonomy. The YAGO 4 KB cleaned up the taxonomy by incorporating the ontology of Schema.org, resulting in a cleaner structure amenable to automated reasoning. However, it also cut away large parts of the Wikidata taxonomy, which is essential for information retrieval. In this paper, we extend YAGO 4 with a large part of the Wikidata taxonomy - while respecting logical constraints and the distinction between classes and instances. This yields YAGO 4.5, a new, logically consistent version of YAGO that adds a rich layer of informative classes. An intrinsic and an extrinsic evaluation show the value of the new resource.
Towards Safer Pretraining: Analyzing and Filtering Harmful Content in Webscale datasets for Responsible LLMs
Large language models (LLMs) have become integral to various real-world applications, leveraging massive, web-sourced datasets like Common Crawl, C4, and FineWeb for pretraining. While these datasets provide linguistic data essential for high-quality natural language generation, they often contain harmful content, such as hate speech, misinformation, and biased narratives. Training LLMs on such unfiltered data risks perpetuating toxic behaviors, spreading misinformation, and amplifying societal biases which can undermine trust in LLM-driven applications and raise ethical concerns about their use. This paper presents a large-scale analysis of inappropriate content across these datasets, offering a comprehensive taxonomy that categorizes harmful webpages into Topical and Toxic based on their intent. We also introduce a prompt evaluation dataset, a high-accuracy Topical and Toxic Prompt (TTP), and a transformer-based model (HarmFormer) for content filtering. Additionally, we create a new multi-harm open-ended toxicity benchmark (HAVOC) and provide crucial insights into how models respond to adversarial toxic inputs. Upon publishing, we will also opensource our model signal on the entire C4 dataset. Our work offers insights into ensuring safer LLM pretraining and serves as a resource for Responsible AI (RAI) compliance.
OpenNovelty: An LLM-powered Agentic System for Verifiable Scholarly Novelty Assessment
Evaluating novelty is critical yet challenging in peer review, as reviewers must assess submissions against a vast, rapidly evolving literature. This report presents OpenNovelty, an LLM-powered agentic system for transparent, evidence-based novelty analysis. The system operates through four phases: (1) extracting the core task and contribution claims to generate retrieval queries; (2) retrieving relevant prior work based on extracted queries via semantic search engine; (3) constructing a hierarchical taxonomy of core-task-related work and performing contribution-level full-text comparisons against each contribution; and (4) synthesizing all analyses into a structured novelty report with explicit citations and evidence snippets. Unlike naive LLM-based approaches, OpenNovelty grounds all assessments in retrieved real papers, ensuring verifiable judgments. We deploy our system on 500+ ICLR 2026 submissions with all reports publicly available on our website, and preliminary analysis suggests it can identify relevant prior work, including closely related papers that authors may overlook. OpenNovelty aims to empower the research community with a scalable tool that promotes fair, consistent, and evidence-backed peer review.
