change f1 to accuracy. add test results
Browse files
README.md
CHANGED
|
@@ -19,27 +19,27 @@ model-index:
|
|
| 19 |
- name: Macro F1
|
| 20 |
type: f1
|
| 21 |
value: 0.6732897445517078
|
| 22 |
-
- name:
|
| 23 |
-
type:
|
| 24 |
value: 0.797242497972425
|
| 25 |
-
- name: False
|
| 26 |
type: f1
|
| 27 |
-
value: 0.
|
| 28 |
-
- name: Mixture
|
| 29 |
type: f1
|
| 30 |
-
value: 0.
|
| 31 |
-
- name: True
|
| 32 |
type: f1
|
| 33 |
-
value: 0.
|
| 34 |
-
- name: Unproven
|
| 35 |
type: f1
|
| 36 |
-
value: 0.
|
| 37 |
---
|
| 38 |
|
| 39 |
# longformer-base-health-fact2
|
| 40 |
|
| 41 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the health_fact dataset.
|
| 42 |
-
It achieves the following results on the
|
| 43 |
- Loss: 0.5858
|
| 44 |
- Micro F1: 0.8122
|
| 45 |
- Macro F1: 0.6830
|
|
@@ -48,6 +48,13 @@ It achieves the following results on the evaluation set:
|
|
| 48 |
- True F1: 0.9234
|
| 49 |
- Unproven F1: 0.5128
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
## Model description
|
| 52 |
|
| 53 |
The health fact dataset is for building fact-checking models related to health. Here is how you can use this model:
|
|
|
|
| 19 |
- name: Macro F1
|
| 20 |
type: f1
|
| 21 |
value: 0.6732897445517078
|
| 22 |
+
- name: Accuracy
|
| 23 |
+
type: accuracy
|
| 24 |
value: 0.797242497972425
|
| 25 |
+
- name: False Accuracy
|
| 26 |
type: f1
|
| 27 |
+
value: 0.8092783505154639
|
| 28 |
+
- name: Mixture Accuracy
|
| 29 |
type: f1
|
| 30 |
+
value: 0.5323383084577115
|
| 31 |
+
- name: True Accuracy
|
| 32 |
type: f1
|
| 33 |
+
value: 0.9081803005008348
|
| 34 |
+
- name: Unproven Accuracy
|
| 35 |
type: f1
|
| 36 |
+
value: 0.4
|
| 37 |
---
|
| 38 |
|
| 39 |
# longformer-base-health-fact2
|
| 40 |
|
| 41 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the health_fact dataset.
|
| 42 |
+
It achieves the following results on the VALIDATION set:
|
| 43 |
- Loss: 0.5858
|
| 44 |
- Micro F1: 0.8122
|
| 45 |
- Macro F1: 0.6830
|
|
|
|
| 48 |
- True F1: 0.9234
|
| 49 |
- Unproven F1: 0.5128
|
| 50 |
|
| 51 |
+
The following are the results on the TEST set:
|
| 52 |
+
- Macro F1: 0.6732897445517078
|
| 53 |
+
- Accuracy: 0.797242497972425
|
| 54 |
+
- False Accuracy: 0.8092783505154639
|
| 55 |
+
- Mixture Accuracy: 0.5323383084577115
|
| 56 |
+
- True Accuracy: 0.9081803005008348
|
| 57 |
+
- Unproven Accuracy: 0.4
|
| 58 |
## Model description
|
| 59 |
|
| 60 |
The health fact dataset is for building fact-checking models related to health. Here is how you can use this model:
|