Add decode_and_test_sequences.py
Browse files- src/decode_and_test_sequences.py +202 -0
src/decode_and_test_sequences.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Decode all 80 generated sequences and test them with HMD-AMP.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from Bio import SeqIO
|
| 10 |
+
from Bio.SeqRecord import SeqRecord
|
| 11 |
+
from Bio.Seq import Seq
|
| 12 |
+
import os
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
import sys
|
| 16 |
+
|
| 17 |
+
# Import the decoder
|
| 18 |
+
from final_sequence_decoder import EmbeddingToSequenceConverter
|
| 19 |
+
|
| 20 |
+
# Import HMD-AMP components
|
| 21 |
+
sys.path.append('/home/edwardsun/flow/HMD-AMP')
|
| 22 |
+
from sklearn.utils import shuffle
|
| 23 |
+
import esm
|
| 24 |
+
from deepforest import CascadeForestClassifier
|
| 25 |
+
from src.utils import *
|
| 26 |
+
|
| 27 |
+
def load_generated_embeddings():
|
| 28 |
+
"""Load all generated embeddings from today."""
|
| 29 |
+
base_path = '/data2/edwardsun/generated_samples'
|
| 30 |
+
today = '20250829'
|
| 31 |
+
|
| 32 |
+
files = [
|
| 33 |
+
f'generated_amps_best_model_no_cfg_{today}.pt',
|
| 34 |
+
f'generated_amps_best_model_weak_cfg_{today}.pt',
|
| 35 |
+
f'generated_amps_best_model_strong_cfg_{today}.pt',
|
| 36 |
+
f'generated_amps_best_model_very_strong_cfg_{today}.pt'
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
all_embeddings = []
|
| 40 |
+
all_labels = []
|
| 41 |
+
|
| 42 |
+
for file in files:
|
| 43 |
+
file_path = os.path.join(base_path, file)
|
| 44 |
+
if os.path.exists(file_path):
|
| 45 |
+
print(f"Loading {file}...")
|
| 46 |
+
embeddings = torch.load(file_path, map_location='cpu')
|
| 47 |
+
|
| 48 |
+
# Extract config type from filename
|
| 49 |
+
if 'no_cfg' in file:
|
| 50 |
+
cfg_type = 'no_cfg'
|
| 51 |
+
elif 'weak_cfg' in file:
|
| 52 |
+
cfg_type = 'weak_cfg'
|
| 53 |
+
elif 'strong_cfg' in file and 'very' not in file:
|
| 54 |
+
cfg_type = 'strong_cfg'
|
| 55 |
+
elif 'very_strong_cfg' in file:
|
| 56 |
+
cfg_type = 'very_strong_cfg'
|
| 57 |
+
|
| 58 |
+
# Each file contains 20 sequences
|
| 59 |
+
for i in range(embeddings.shape[0]):
|
| 60 |
+
all_embeddings.append(embeddings[i])
|
| 61 |
+
all_labels.append(f"{cfg_type}_{i+1}")
|
| 62 |
+
|
| 63 |
+
print(f"β Loaded {len(all_embeddings)} embeddings total")
|
| 64 |
+
return all_embeddings, all_labels
|
| 65 |
+
|
| 66 |
+
def decode_embeddings_to_sequences(embeddings, labels):
|
| 67 |
+
"""Decode embeddings to sequences."""
|
| 68 |
+
print("Initializing sequence decoder...")
|
| 69 |
+
decoder = EmbeddingToSequenceConverter(device='cuda')
|
| 70 |
+
|
| 71 |
+
sequences = []
|
| 72 |
+
sequence_ids = []
|
| 73 |
+
|
| 74 |
+
print("Decoding embeddings to sequences...")
|
| 75 |
+
for i, (embedding, label) in enumerate(tqdm(zip(embeddings, labels), total=len(embeddings))):
|
| 76 |
+
# Decode using diverse method for better results
|
| 77 |
+
sequence = decoder.embedding_to_sequence(
|
| 78 |
+
embedding,
|
| 79 |
+
method='diverse',
|
| 80 |
+
temperature=0.8
|
| 81 |
+
)
|
| 82 |
+
sequences.append(sequence)
|
| 83 |
+
sequence_ids.append(f"generated_seq_{i+1}_{label}")
|
| 84 |
+
|
| 85 |
+
return sequences, sequence_ids
|
| 86 |
+
|
| 87 |
+
def save_sequences_as_fasta(sequences, sequence_ids, filename):
|
| 88 |
+
"""Save sequences as FASTA file."""
|
| 89 |
+
records = []
|
| 90 |
+
for seq_id, seq in zip(sequence_ids, sequences):
|
| 91 |
+
record = SeqRecord(Seq(seq), id=seq_id, description="")
|
| 92 |
+
records.append(record)
|
| 93 |
+
|
| 94 |
+
SeqIO.write(records, filename, "fasta")
|
| 95 |
+
print(f"β Saved {len(sequences)} sequences to {filename}")
|
| 96 |
+
|
| 97 |
+
def test_with_hmd_amp(sequences, sequence_ids):
|
| 98 |
+
"""Test sequences with HMD-AMP classifier."""
|
| 99 |
+
print("\n𧬠Testing sequences with HMD-AMP classifier...")
|
| 100 |
+
|
| 101 |
+
# Set device
|
| 102 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 103 |
+
|
| 104 |
+
# Load models
|
| 105 |
+
ftmodel_save_path = '/home/edwardsun/flow/HMD-AMP/AMP/ft_parts.pth'
|
| 106 |
+
clsmodel_save_path = '/home/edwardsun/flow/HMD-AMP/AMP/clsmodel'
|
| 107 |
+
|
| 108 |
+
# Create temporary FASTA file for HMD-AMP
|
| 109 |
+
temp_fasta = 'temp_sequences.fasta'
|
| 110 |
+
save_sequences_as_fasta(sequences, sequence_ids, temp_fasta)
|
| 111 |
+
|
| 112 |
+
try:
|
| 113 |
+
# Generate sequence features using HMD-AMP's feature extraction
|
| 114 |
+
seq_embeddings, _, seq_ids = amp_feature_extraction(ftmodel_save_path, device, temp_fasta)
|
| 115 |
+
|
| 116 |
+
# Load classifier
|
| 117 |
+
cls_model = CascadeForestClassifier()
|
| 118 |
+
cls_model.load(clsmodel_save_path)
|
| 119 |
+
|
| 120 |
+
# Make predictions
|
| 121 |
+
binary_pred = cls_model.predict(seq_embeddings)
|
| 122 |
+
|
| 123 |
+
print(f"π HMD-AMP Results:")
|
| 124 |
+
print(f"Total sequences: {len(sequences)}")
|
| 125 |
+
print(f"Predicted AMPs: {np.sum(binary_pred)} ({np.sum(binary_pred)/len(sequences)*100:.1f}%)")
|
| 126 |
+
print(f"Predicted non-AMPs: {len(sequences) - np.sum(binary_pred)} ({(len(sequences) - np.sum(binary_pred))/len(sequences)*100:.1f}%)")
|
| 127 |
+
|
| 128 |
+
# Analyze results by CFG type
|
| 129 |
+
results_df = pd.DataFrame({
|
| 130 |
+
'ID': sequence_ids,
|
| 131 |
+
'Sequence': sequences,
|
| 132 |
+
'AMP_Prediction': binary_pred,
|
| 133 |
+
'CFG_Type': [seq_id.split('_')[-2] for seq_id in sequence_ids]
|
| 134 |
+
})
|
| 135 |
+
|
| 136 |
+
# Group by CFG type
|
| 137 |
+
cfg_analysis = results_df.groupby('CFG_Type')['AMP_Prediction'].agg(['count', 'sum', 'mean']).round(3)
|
| 138 |
+
cfg_analysis.columns = ['Total', 'Predicted_AMPs', 'AMP_Rate']
|
| 139 |
+
|
| 140 |
+
print(f"\nπ Results by CFG Configuration:")
|
| 141 |
+
print(cfg_analysis)
|
| 142 |
+
|
| 143 |
+
# Show predicted AMPs
|
| 144 |
+
amp_results = results_df[results_df['AMP_Prediction'] == 1]
|
| 145 |
+
if len(amp_results) > 0:
|
| 146 |
+
print(f"\nπ Sequences predicted as AMPs ({len(amp_results)}):")
|
| 147 |
+
for idx, row in amp_results.iterrows():
|
| 148 |
+
seq = row['Sequence']
|
| 149 |
+
cationic = seq.count('K') + seq.count('R')
|
| 150 |
+
net_charge = seq.count('K') + seq.count('R') + seq.count('H') - seq.count('D') - seq.count('E')
|
| 151 |
+
print(f" {row['ID']}: {seq}")
|
| 152 |
+
print(f" Length: {len(seq)}, Cationic (K+R): {cationic}, Net charge: {net_charge:+d}")
|
| 153 |
+
else:
|
| 154 |
+
print(f"\nβ No sequences predicted as AMPs")
|
| 155 |
+
|
| 156 |
+
# Save detailed results
|
| 157 |
+
results_df.to_csv('hmd_amp_detailed_results.csv', index=False)
|
| 158 |
+
cfg_analysis.to_csv('hmd_amp_cfg_analysis.csv')
|
| 159 |
+
|
| 160 |
+
print(f"\nπΎ Results saved:")
|
| 161 |
+
print(f" - hmd_amp_detailed_results.csv (detailed per-sequence results)")
|
| 162 |
+
print(f" - hmd_amp_cfg_analysis.csv (summary by CFG type)")
|
| 163 |
+
|
| 164 |
+
return results_df, cfg_analysis
|
| 165 |
+
|
| 166 |
+
finally:
|
| 167 |
+
# Clean up temporary file
|
| 168 |
+
if os.path.exists(temp_fasta):
|
| 169 |
+
os.remove(temp_fasta)
|
| 170 |
+
|
| 171 |
+
def main():
|
| 172 |
+
print("π Starting sequence decoding and HMD-AMP testing...")
|
| 173 |
+
|
| 174 |
+
# Load embeddings
|
| 175 |
+
embeddings, labels = load_generated_embeddings()
|
| 176 |
+
|
| 177 |
+
# Decode to sequences
|
| 178 |
+
sequences, sequence_ids = decode_embeddings_to_sequences(embeddings, labels)
|
| 179 |
+
|
| 180 |
+
# Save sequences as FASTA
|
| 181 |
+
fasta_filename = f'generated_sequences_{datetime.now().strftime("%Y%m%d_%H%M%S")}.fasta'
|
| 182 |
+
save_sequences_as_fasta(sequences, sequence_ids, fasta_filename)
|
| 183 |
+
|
| 184 |
+
# Test with HMD-AMP
|
| 185 |
+
results_df, cfg_analysis = test_with_hmd_amp(sequences, sequence_ids)
|
| 186 |
+
|
| 187 |
+
print(f"\nβ
Complete! Generated and tested {len(sequences)} sequences")
|
| 188 |
+
print(f"π Sequences saved as: {fasta_filename}")
|
| 189 |
+
|
| 190 |
+
# Final summary
|
| 191 |
+
total_amps = results_df['AMP_Prediction'].sum()
|
| 192 |
+
print(f"\nπ FINAL SUMMARY:")
|
| 193 |
+
print(f"Generated sequences: {len(sequences)}")
|
| 194 |
+
print(f"HMD-AMP predicted AMPs: {total_amps}/{len(sequences)} ({total_amps/len(sequences)*100:.1f}%)")
|
| 195 |
+
|
| 196 |
+
if total_amps > 0:
|
| 197 |
+
print(f"β¨ Success! Your flow model generated {total_amps} sequences that HMD-AMP classifies as AMPs!")
|
| 198 |
+
else:
|
| 199 |
+
print(f"π No sequences classified as AMPs - this may indicate the need for stronger AMP conditioning.")
|
| 200 |
+
|
| 201 |
+
if __name__ == "__main__":
|
| 202 |
+
main()
|