FlowFinal / training_logs /training_output.log
esunAI's picture
Add training_output.log
eb85c1a verified
raw
history blame
20.4 kB
nohup: ignoring input
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:70: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = GradScaler()
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:116: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
self.embeddings = torch.load(combined_path, map_location=self.device)
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:180: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
self.compressor.load_state_dict(torch.load('final_compressor_model.pth', map_location=self.device))
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:181: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
self.decompressor.load_state_dict(torch.load('final_decompressor_model.pth', map_location=self.device))
/data2/edwardsun/flow_home/cfg_dataset.py:253: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
self.embeddings = torch.load(combined_path, map_location='cpu')
Starting optimized training with batch_size=96, epochs=6000
Using GPU 0 for optimized H100 training
Mixed precision: True
Batch size: 96
Target epochs: 6000
Learning rate: 0.0004 -> 0.0002
βœ“ Mixed precision training enabled (BF16)
Loading ALL AMP embeddings from /data2/edwardsun/flow_project/peptide_embeddings/...
Loading combined embeddings from /data2/edwardsun/flow_project/peptide_embeddings/all_peptide_embeddings.pt...
βœ“ Loaded ALL embeddings: torch.Size([17968, 50, 1280])
Computing preprocessing statistics...
βœ“ Statistics computed and saved:
Total embeddings: 17,968
Mean: -0.0005 Β± 0.0897
Std: 0.0869 Β± 0.1168
Range: [-9.1738, 3.2894]
Initializing models...
βœ“ Model compiled with torch.compile for speedup
βœ“ Models initialized:
Compressor parameters: 78,817,360
Decompressor parameters: 39,458,720
Flow model parameters: 50,779,584
Initializing datasets with FULL data...
Loading AMP embeddings from /data2/edwardsun/flow_project/peptide_embeddings/...
Loading combined embeddings from /data2/edwardsun/flow_project/peptide_embeddings/all_peptide_embeddings.pt (FULL DATA)...
βœ“ Loaded ALL embeddings: torch.Size([17968, 50, 1280])
Loading CFG data from FASTA: /home/edwardsun/flow/combined_final.fasta...
Parsing FASTA file: /home/edwardsun/flow/combined_final.fasta
Label assignment: >AP = AMP (0), >sp = Non-AMP (1)
βœ“ Parsed 6983 valid sequences from FASTA
AMP sequences: 3306
Non-AMP sequences: 3677
Masked for CFG: 698
Loaded 6983 CFG sequences
Label distribution: [3306 3677]
Masked 698 labels for CFG training
Aligning AMP embeddings with CFG data...
Aligned 6983 samples
CFG Flow Dataset initialized:
AMP embeddings: torch.Size([17968, 50, 1280])
CFG labels: 6983
Aligned samples: 6983
βœ“ Dataset initialized with FULL data:
Total samples: 6,983
Batch size: 96
Batches per epoch: 73
Total training steps: 438,000
Validation every: 10,000 steps
Initializing optimizer and scheduler...
βœ“ Optimizer initialized:
Base LR: 0.0004
Min LR: 0.0002
Warmup steps: 5000
Weight decay: 0.01
Gradient clip norm: 1.0
βœ“ Optimized Single GPU training setup complete with FULL DATA!
πŸš€ Starting Optimized Single GPU Flow Matching Training with FULL DATA
GPU: 0
Total iterations: 6000
Batch size: 96
Total samples: 6,983
Mixed precision: True
Estimated time: ~8-10 hours (overnight training with ALL data)
============================================================
Training Flow Model: 0%| | 0/6000 [00:00<?, ?it/s]/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
Training Flow Model: 0%| | 1/6000 [01:09<116:23:06, 69.84s/it]Epoch 0 | Step 1/438000 | Loss: 2.328033 | LR: 4.01e-05 | Speed: 0.0 steps/s | ETA: 3889.5h
Epoch 0 | Avg Loss: 0.950054 | LR: 4.53e-05 | Time: 69.8s | Samples: 6,983
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
Training Flow Model: 0%| | 2/6000 [01:15<53:24:52, 32.06s/it] Epoch 1 | Step 74/438000 | Loss: 0.629602 | LR: 4.53e-05 | Speed: 1.0 steps/s | ETA: 116.2h
Epoch 1 | Avg Loss: 0.415130 | LR: 5.05e-05 | Time: 5.6s | Samples: 6,983
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
Training Flow Model: 0%| | 3/6000 [01:18<31:05:28, 18.66s/it]Epoch 2 | Step 147/438000 | Loss: 0.304313 | LR: 5.06e-05 | Speed: 1.9 steps/s | ETA: 63.2h
Epoch 2 | Avg Loss: 0.227218 | LR: 5.58e-05 | Time: 2.7s | Samples: 6,983
Training Flow Model: 0%| | 4/6000 [01:20<20:29:56, 12.31s/it]Epoch 3 | Step 220/438000 | Loss: 0.210514 | LR: 5.58e-05 | Speed: 2.8 steps/s | ETA: 43.7h
Epoch 3 | Avg Loss: 0.178846 | LR: 6.10e-05 | Time: 2.6s | Samples: 6,983
Training Flow Model: 0%| | 5/6000 [01:23<14:48:54, 8.90s/it]Epoch 4 | Step 293/438000 | Loss: 0.182317 | LR: 6.11e-05 | Speed: 3.6 steps/s | ETA: 33.9h
Epoch 4 | Avg Loss: 0.148526 | LR: 6.63e-05 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 6/6000 [01:26<11:23:00, 6.84s/it]Epoch 5 | Step 366/438000 | Loss: 0.128248 | LR: 6.64e-05 | Speed: 4.3 steps/s | ETA: 28.1h
Epoch 5 | Avg Loss: 0.127575 | LR: 7.15e-05 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 7/6000 [01:29<9:07:19, 5.48s/it] Epoch 6 | Step 439/438000 | Loss: 0.105957 | LR: 7.16e-05 | Speed: 5.0 steps/s | ETA: 24.2h
Epoch 6 | Avg Loss: 0.109353 | LR: 7.68e-05 | Time: 2.7s | Samples: 6,983
Training Flow Model: 0%| | 8/6000 [01:31<7:38:51, 4.59s/it]Epoch 7 | Step 512/438000 | Loss: 0.087330 | LR: 7.69e-05 | Speed: 5.7 steps/s | ETA: 21.3h
Epoch 7 | Avg Loss: 0.101109 | LR: 8.20e-05 | Time: 2.7s | Samples: 6,983
Training Flow Model: 0%| | 9/6000 [01:34<6:44:23, 4.05s/it]Epoch 8 | Step 585/438000 | Loss: 0.081881 | LR: 8.21e-05 | Speed: 6.3 steps/s | ETA: 19.3h
Epoch 8 | Avg Loss: 0.089056 | LR: 8.73e-05 | Time: 2.9s | Samples: 6,983
Training Flow Model: 0%| | 10/6000 [01:37<6:07:40, 3.68s/it]Epoch 9 | Step 658/438000 | Loss: 0.085630 | LR: 8.74e-05 | Speed: 6.9 steps/s | ETA: 17.6h
Epoch 9 | Avg Loss: 0.083894 | LR: 9.26e-05 | Time: 2.9s | Samples: 6,983
Training Flow Model: 0%| | 11/6000 [01:40<5:42:16, 3.43s/it]Epoch 10 | Step 731/438000 | Loss: 0.081927 | LR: 9.26e-05 | Speed: 7.4 steps/s | ETA: 16.4h
Epoch 10 | Avg Loss: 0.077295 | LR: 9.78e-05 | Time: 2.9s | Samples: 6,983
Training Flow Model: 0%| | 12/6000 [01:43<5:23:05, 3.24s/it]Epoch 11 | Step 804/438000 | Loss: 0.068221 | LR: 9.79e-05 | Speed: 7.9 steps/s | ETA: 15.3h
Epoch 11 | Avg Loss: 0.072662 | LR: 1.03e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 13/6000 [01:46<5:12:15, 3.13s/it]Epoch 12 | Step 877/438000 | Loss: 0.079151 | LR: 1.03e-04 | Speed: 8.4 steps/s | ETA: 14.4h
Epoch 12 | Avg Loss: 0.069846 | LR: 1.08e-04 | Time: 2.9s | Samples: 6,983
Training Flow Model: 0%| | 14/6000 [01:48<4:58:17, 2.99s/it]Epoch 13 | Step 950/438000 | Loss: 0.074991 | LR: 1.08e-04 | Speed: 8.9 steps/s | ETA: 13.7h
Epoch 13 | Avg Loss: 0.064569 | LR: 1.14e-04 | Time: 2.7s | Samples: 6,983
Training Flow Model: 0%| | 15/6000 [01:51<4:51:40, 2.92s/it]Epoch 14 | Step 1023/438000 | Loss: 0.043908 | LR: 1.14e-04 | Speed: 9.3 steps/s | ETA: 13.0h
Epoch 14 | Avg Loss: 0.057743 | LR: 1.19e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 16/6000 [01:54<4:48:57, 2.90s/it]Epoch 15 | Step 1096/438000 | Loss: 0.048052 | LR: 1.19e-04 | Speed: 9.7 steps/s | ETA: 12.4h
Epoch 15 | Avg Loss: 0.058437 | LR: 1.24e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 17/6000 [01:57<4:44:23, 2.85s/it]Epoch 16 | Step 1169/438000 | Loss: 0.045587 | LR: 1.24e-04 | Speed: 10.1 steps/s | ETA: 12.0h
Epoch 16 | Avg Loss: 0.055771 | LR: 1.29e-04 | Time: 2.7s | Samples: 6,983
Training Flow Model: 0%| | 18/6000 [01:59<4:41:37, 2.82s/it]Epoch 17 | Step 1242/438000 | Loss: 0.053337 | LR: 1.29e-04 | Speed: 10.5 steps/s | ETA: 11.5h
Epoch 17 | Avg Loss: 0.053140 | LR: 1.35e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 19/6000 [02:02<4:42:38, 2.84s/it]Epoch 18 | Step 1315/438000 | Loss: 0.075343 | LR: 1.35e-04 | Speed: 10.9 steps/s | ETA: 11.1h
Epoch 18 | Avg Loss: 0.049295 | LR: 1.40e-04 | Time: 2.9s | Samples: 6,983
Training Flow Model: 0%| | 20/6000 [02:05<4:42:48, 2.84s/it]Epoch 19 | Step 1388/438000 | Loss: 0.043840 | LR: 1.40e-04 | Speed: 11.2 steps/s | ETA: 10.8h
Epoch 19 | Avg Loss: 0.049483 | LR: 1.45e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 21/6000 [02:08<4:41:33, 2.83s/it]Epoch 20 | Step 1461/438000 | Loss: 0.076462 | LR: 1.45e-04 | Speed: 11.6 steps/s | ETA: 10.5h
Epoch 20 | Avg Loss: 0.048242 | LR: 1.50e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 22/6000 [02:11<4:40:07, 2.81s/it]Epoch 21 | Step 1534/438000 | Loss: 0.039453 | LR: 1.50e-04 | Speed: 11.9 steps/s | ETA: 10.2h
Epoch 21 | Avg Loss: 0.047419 | LR: 1.56e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 23/6000 [02:13<4:40:29, 2.82s/it]Epoch 22 | Step 1607/438000 | Loss: 0.058766 | LR: 1.56e-04 | Speed: 12.2 steps/s | ETA: 10.0h
Epoch 22 | Avg Loss: 0.047794 | LR: 1.61e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 24/6000 [02:16<4:45:06, 2.86s/it]Epoch 23 | Step 1680/438000 | Loss: 0.038332 | LR: 1.61e-04 | Speed: 12.4 steps/s | ETA: 9.7h
Epoch 23 | Avg Loss: 0.047601 | LR: 1.66e-04 | Time: 3.0s | Samples: 6,983
Training Flow Model: 0%| | 25/6000 [02:19<4:45:46, 2.87s/it]Epoch 24 | Step 1753/438000 | Loss: 0.053138 | LR: 1.66e-04 | Speed: 12.7 steps/s | ETA: 9.5h
Epoch 24 | Avg Loss: 0.045266 | LR: 1.71e-04 | Time: 2.9s | Samples: 6,983
Training Flow Model: 0%| | 26/6000 [02:22<4:41:52, 2.83s/it]Epoch 25 | Step 1826/438000 | Loss: 0.045704 | LR: 1.71e-04 | Speed: 13.0 steps/s | ETA: 9.3h
Epoch 25 | Avg Loss: 0.044707 | LR: 1.77e-04 | Time: 2.7s | Samples: 6,983
Training Flow Model: 0%| | 27/6000 [02:25<4:38:38, 2.80s/it]Epoch 26 | Step 1899/438000 | Loss: 0.052826 | LR: 1.77e-04 | Speed: 13.2 steps/s | ETA: 9.1h
Epoch 26 | Avg Loss: 0.041951 | LR: 1.82e-04 | Time: 2.7s | Samples: 6,983
Training Flow Model: 0%| | 28/6000 [02:28<4:41:26, 2.83s/it]Epoch 27 | Step 1972/438000 | Loss: 0.030554 | LR: 1.82e-04 | Speed: 13.5 steps/s | ETA: 9.0h
Epoch 27 | Avg Loss: 0.044097 | LR: 1.87e-04 | Time: 2.9s | Samples: 6,983
Training Flow Model: 0%| | 29/6000 [02:31<4:41:46, 2.83s/it]Epoch 28 | Step 2045/438000 | Loss: 0.036556 | LR: 1.87e-04 | Speed: 13.7 steps/s | ETA: 8.8h
Epoch 28 | Avg Loss: 0.043588 | LR: 1.92e-04 | Time: 2.8s | Samples: 6,983
Training Flow Model: 0%| | 30/6000 [02:34<5:10:48, 3.12s/it]Epoch 29 | Step 2118/438000 | Loss: 0.036764 | LR: 1.92e-04 | Speed: 13.9 steps/s | ETA: 8.7h
Epoch 29 | Avg Loss: 0.042376 | LR: 1.98e-04 | Time: 3.8s | Samples: 6,983
Training Flow Model: 1%| | 31/6000 [02:38<5:33:49, 3.36s/it]Epoch 30 | Step 2191/438000 | Loss: 0.034607 | LR: 1.98e-04 | Speed: 14.1 steps/s | ETA: 8.6h
Epoch 30 | Avg Loss: 0.039175 | LR: 2.03e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 32/6000 [02:42<5:52:54, 3.55s/it]Epoch 31 | Step 2264/438000 | Loss: 0.026377 | LR: 2.03e-04 | Speed: 14.2 steps/s | ETA: 8.5h
Epoch 31 | Avg Loss: 0.041455 | LR: 2.08e-04 | Time: 4.0s | Samples: 6,983
Training Flow Model: 1%| | 33/6000 [02:46<6:02:28, 3.64s/it]Epoch 32 | Step 2337/438000 | Loss: 0.043802 | LR: 2.08e-04 | Speed: 14.3 steps/s | ETA: 8.5h
Epoch 32 | Avg Loss: 0.040566 | LR: 2.13e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 34/6000 [02:50<6:11:21, 3.73s/it]Epoch 33 | Step 2410/438000 | Loss: 0.041541 | LR: 2.14e-04 | Speed: 14.4 steps/s | ETA: 8.4h
Epoch 33 | Avg Loss: 0.038954 | LR: 2.19e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 35/6000 [02:54<6:14:18, 3.77s/it]Epoch 34 | Step 2483/438000 | Loss: 0.040879 | LR: 2.19e-04 | Speed: 14.5 steps/s | ETA: 8.4h
Epoch 34 | Avg Loss: 0.041221 | LR: 2.24e-04 | Time: 3.8s | Samples: 6,983
Training Flow Model: 1%| | 36/6000 [02:58<6:20:05, 3.82s/it]Epoch 35 | Step 2556/438000 | Loss: 0.043876 | LR: 2.24e-04 | Speed: 14.6 steps/s | ETA: 8.3h
Epoch 35 | Avg Loss: 0.039926 | LR: 2.29e-04 | Time: 4.0s | Samples: 6,983
Training Flow Model: 1%| | 37/6000 [03:02<6:24:48, 3.87s/it]Epoch 36 | Step 2629/438000 | Loss: 0.047236 | LR: 2.29e-04 | Speed: 14.7 steps/s | ETA: 8.2h
Epoch 36 | Avg Loss: 0.043514 | LR: 2.34e-04 | Time: 4.0s | Samples: 6,983
Training Flow Model: 1%| | 38/6000 [03:06<6:26:14, 3.89s/it]Epoch 37 | Step 2702/438000 | Loss: 0.030528 | LR: 2.35e-04 | Speed: 14.7 steps/s | ETA: 8.2h
Epoch 37 | Avg Loss: 0.037676 | LR: 2.40e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 39/6000 [03:10<6:23:45, 3.86s/it]Epoch 38 | Step 2775/438000 | Loss: 0.045154 | LR: 2.40e-04 | Speed: 14.8 steps/s | ETA: 8.1h
Epoch 38 | Avg Loss: 0.039012 | LR: 2.45e-04 | Time: 3.8s | Samples: 6,983
Training Flow Model: 1%| | 40/6000 [03:13<6:24:55, 3.88s/it]Epoch 39 | Step 2848/438000 | Loss: 0.041152 | LR: 2.45e-04 | Speed: 14.9 steps/s | ETA: 8.1h
Epoch 39 | Avg Loss: 0.037944 | LR: 2.50e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 41/6000 [03:17<6:23:10, 3.86s/it]Epoch 40 | Step 2921/438000 | Loss: 0.031573 | LR: 2.50e-04 | Speed: 15.0 steps/s | ETA: 8.1h
Epoch 40 | Avg Loss: 0.037019 | LR: 2.55e-04 | Time: 3.8s | Samples: 6,983
Training Flow Model: 1%| | 42/6000 [03:21<6:24:07, 3.87s/it]Epoch 41 | Step 2994/438000 | Loss: 0.031375 | LR: 2.56e-04 | Speed: 15.1 steps/s | ETA: 8.0h
Epoch 41 | Avg Loss: 0.036788 | LR: 2.61e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 43/6000 [03:25<6:23:46, 3.87s/it]Epoch 42 | Step 3067/438000 | Loss: 0.025271 | LR: 2.61e-04 | Speed: 15.1 steps/s | ETA: 8.0h
Epoch 42 | Avg Loss: 0.038254 | LR: 2.66e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 44/6000 [03:29<6:27:10, 3.90s/it]Epoch 43 | Step 3140/438000 | Loss: 0.059067 | LR: 2.66e-04 | Speed: 15.2 steps/s | ETA: 7.9h
Epoch 43 | Avg Loss: 0.037138 | LR: 2.71e-04 | Time: 4.0s | Samples: 6,983
Training Flow Model: 1%| | 45/6000 [03:33<6:24:59, 3.88s/it]Epoch 44 | Step 3213/438000 | Loss: 0.042951 | LR: 2.71e-04 | Speed: 15.3 steps/s | ETA: 7.9h
Epoch 44 | Avg Loss: 0.039265 | LR: 2.77e-04 | Time: 3.8s | Samples: 6,983
Training Flow Model: 1%| | 46/6000 [03:37<6:24:33, 3.88s/it]Epoch 45 | Step 3286/438000 | Loss: 0.058999 | LR: 2.77e-04 | Speed: 15.3 steps/s | ETA: 7.9h
Epoch 45 | Avg Loss: 0.036169 | LR: 2.82e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 47/6000 [03:41<6:24:28, 3.88s/it]Epoch 46 | Step 3359/438000 | Loss: 0.029517 | LR: 2.82e-04 | Speed: 15.4 steps/s | ETA: 7.8h
Epoch 46 | Avg Loss: 0.037829 | LR: 2.87e-04 | Time: 3.9s | Samples: 6,983
Training Flow Model: 1%| | 48/6000 [03:45<6:28:07, 3.91s/it]Epoch 47 | Step 3432/438000 | Loss: 0.037272 | LR: 2.87e-04 | Speed: 15.5 steps/s | ETA: 7.8h
Epoch 47 | Avg Loss: 0.038144 | LR: 2.92e-04 | Time: 4.0s | Samples: 6,983
Training Flow Model: 1%| | 49/6000 [03:48<6:27:19, 3.91s/it]Epoch 48 | Step 3505/438000 | Loss: 0.036242 | LR: 2.92e-04 | Speed: 15.5 steps/s | ETA: 7.8h
Epoch 48 | Avg Loss: 0.034156 | LR: 2.98e-04 | Time: 3.9s | Samples: 6,983