import sys import argparse import yaml import numpy as np # torch import torch import torch.nn as nn # torchlight import torchlight.torchlight as torchlight from torchlight.torchlight import str2bool from torchlight.torchlight import DictAction from torchlight.torchlight import import_class class IO(): """ IO Processor """ def __init__(self, argv=None): self.load_arg(argv) self.init_environment() self.load_model() self.load_weights() self.gpu() def load_arg(self, argv=None): parser = self.get_parser() # load arg form config file p = parser.parse_args(argv) if p.config is not None: # load config file with open(p.config, 'r') as f: default_arg = yaml.load(f, Loader=yaml.FullLoader) # update parser from config file key = vars(p).keys() for k in default_arg.keys(): if k not in key: print('Unknown Arguments: {}'.format(k)) assert k in key parser.set_defaults(**default_arg) self.arg = parser.parse_args(argv) def init_environment(self): self.io = torchlight.IO( self.arg.work_dir, save_log=self.arg.save_log, print_log=self.arg.print_log) self.io.save_arg(self.arg) # gpu if self.arg.use_gpu: gpus = torchlight.visible_gpu(self.arg.device) torchlight.occupy_gpu(gpus) self.gpus = gpus self.dev = "cuda:0" else: self.dev = "cpu" def load_weights(self): print(self.arg.rename_weights) if self.arg.weights: self.model = self.io.load_weights(self.model, self.arg.weights, self.arg.ignore_weights,self.arg.rename_weights) def gpu(self): # move modules to gpu self.model = self.model.to(self.dev) for name, value in vars(self).items(): cls_name = str(value.__class__) if cls_name.find('torch.nn.modules') != -1: setattr(self, name, value.to(self.dev)) # model parallel if self.arg.use_gpu and len(self.gpus) > 1: self.model = nn.DataParallel(self.model, device_ids=self.gpus) self.model = self.model.module def start(self): self.io.print_log('Parameters:\n{}\n'.format(str(vars(self.arg)))) @staticmethod def get_parser(add_help=False): # parameter priority: command line > config > default parser = argparse.ArgumentParser( add_help=add_help, description='IO Processor') parser.add_argument('-w', '--work_dir', default='./work_dir/levi', help='the work folder for storing results') parser.add_argument('-c', '--config', default=None, help='path to the configuration file') # processor parser.add_argument('--use_gpu', type=str2bool, default=True, help='use GPUs or not') parser.add_argument('--device', type=int, default=0, nargs='+', help='the indexes of GPUs for training or testing') # visualize and debug parser.add_argument('--print_log', type=str2bool, default=True, help='print logging or not') parser.add_argument('--save_log', type=str2bool, default=True, help='save logging or not') # model parser.add_argument('--model', default=None, help='the model will be used') parser.add_argument('--model_args', action=DictAction, default=dict(), help='the arguments of model') parser.add_argument('--weights', default=None, help='the weights for network initialization') parser.add_argument('--ignore_weights', type=str, default=[], nargs='+', help='the name of weights which will be ignored in the initialization') return parser