mrrtmob/kiri-ocr
Updated
β’
59
image
imagewidth (px) 512
512
| text
stringlengths 6
70
|
|---|---|
ααααα·αααΎαααααααΉαααααΌαααΆαααααΆαααΆααα
|
|
ααα αααα«αααααΌα α
αΌαααΆα
|
|
addition attract participation from other ones
|
|
αααααααααα’ααΈαααα α αΎααααααΆααααα αΆα
|
|
αα»ααααααααΈ αααααα
ααMVααααΈ
|
|
ααααα¨.α α ααΆααΈαααααααα α©αα£α
|
|
ααΌααααααΆααααΆ ααααα½αααα·ααααΆαααΆαααααα
|
|
αααααΈ ααααΌαααΈααααα αα·αααααα ααΆααααααΆα
|
|
ααααααα·ααααΆααΆααααα αααααα
αα Β«ααααα’Β»
|
|
α
αΌααα
α’α»αα‘α»αα
αααΎαααααΆαα
|
|
# Entry 62654 - TD1_ID_CARD
|
|
ααΎααααααΎαα’αααααΆααα»ααΌαααΆααααΆαα½αααα·αααααα
|
|
ααΆααααΆααΈα‘αΆααααααΎααααα
αΆαααααΉαααα·ααΆααα
|
|
α αααααα·ααΈ MoΓ«t Party Day ααααΌαααΆα
|
|
αα·ααΈαα·αααΆαααααα½αααΈα‘αΆα§αααααα·ααααΆ
|
|
ααααΌαααα½αααααΌαααααΆααααΆαααααΎαααΆααααΈ
|
|
αα·αααΌαααααααααα½αααααΏα α αΎααααα»α
|
|
αααααααααααααααΌαααΌααααΉαααααααααα·ααααα·αα αα
|
|
αααααΆαααααααααΆαααααααααα ααααΆα
|
|
ααΆαααααααααααααΎααααααααΆααααα»αααΆαα
αα
αΆα
|
|
ααΆαα
α·ααααααα»ααααα½α αα·αα
ααααΎα
|
|
ααΆαααα α’αα·ααΆαααααΆααααααΆααααααα½αααα ααΆααααααΆα
|
|
α
α»αααααΆααα
αααα: 23/10/2018 - 13:54 αααααα
|
|
α‘α¨ ααααααααΆ ααααΆαα’α α‘α¨ αααα·ααα
ααΎ
|
|
αα·αααααΉαααααΌα ααααΎααα αΆααΈαααααα·α
|
|
αααα½α ααα ααα»α ααΈααΆ ααΏααααΆαααααΆαα
|
|
αααααΆαααα α₯α αααααΆαα αα·ααααΌαααΆα
|
|
αααααΆαααααΌααα·αααΌαααΈααΆααα·α
|
|
α
α»ααα
αααααααΈαα
αα
|
|
ααΆααααααα·α
αα
αααααΆαααα»αααΆαααααααααα
|
|
α
ααα»α
ααααααααα»αααααααααααα»ααΆ
|
|
ααααααΈααααΆααααΆαααΆαααααααΆαα
α·α ααα·α
|
|
ααΌα ααααΌα αα·α ααα α αααααΉαααΉα
|
|
ααααΆααααα½αα
ααα½αααααααα·ααααα»ααα·ααα
|
|
αααααα ααααααααΆααΆααΆα
αααα ααΆααααα·α
|
|
αα’αααααΎαααΈααααααΈα’α£
|
|
ααΎααα½α
αααα½αααααα αΎα
|
|
ααααααααα (ααΆαα
ααα
αΆαααΆα) α
α·ααααααα
|
|
ααααααααααα·ααΆαααααα
α·αααΊ ααΉαααααΆ
|
|
ααααΈααααααααα
α‘αΎααα ααα»αααα
|
|
ααΆαα²ααααΉαααΆ αααααααααααααααα
|
|
ααΆααααααΆαααα αααααΊ
|
|
had been educated in Vietnam after
|
|
ααΒ»αααΆαα’ααααααα ααααααα»αααΆα
αααΎα
|
|
αα»α ααΆαα£α₯α ααΆαααα αααααΆαααααααΆα α
|
|
# Entry 97986 - TD2_VISA
|
|
ααα ααααΆααα
ααααααααα αααΆαααα
|
|
ααααααΈ ααααΌαααΆαα’αααααΎαααααααΌαα·α
|
|
αααααΆααΈαααααΌαα·α
αααΆαα
|
|
ααΉαααΆααααααααα½ααααα»αααααααΆααΆααΆα
αααααααα»ααΆ
|
|
αα
ααααααΈα© αααα·αα»ααΆ ααΆαα’αΆα
(Translated)
|
|
αααααα α’ααααΆαααααααααΆαααα
|
|
ααααΎααααααα‘αΎααα·α α₯ αα
|
|
αααααα
ααΆα α¨α₯ ααΆααααα¦- ααΆαααααααα‘αΆα
|
|
α’αααααααΆα
ααααα
αααα αα·ααα·ααΆαααα
|
|
αα·αααααΌαααΆααααα½αα±ααα
αααα»αααα»ααααΆα
|
|
ααΆααααααααΆ αα
ααααα Β«α αα»α αααΒ»
|
|
α’αααΈαααα α½αα
α·ααααααααΊααΆα
|
|
α’αΆα
ααΆαααα 700ααΆαααΆαααα
|
|
ααααααΈα’α£ αααα»ααΆ ααααΆαα’α α‘α© ααΎααααΈ
|
|
ααα»αααααα α
ααααααααααααααα
|
|
and Meteorology has forecast that from
|
|
ααααααΆααααααααααα·ααααααα ααΆαααααααααΆα
|
|
αααααΆααααααΆα
αΆααα James Tyner ααΆααααααΆα
αΆαααααααα
|
|
ααΆαααΆαααααΎα’ααααααααΆααααα ααΌααααααΆαααααα αααααΆαα
|
|
ααΈ ααΆ:αααααα»α ααΈ 2 ααααααααΆ
|
|
αα
αααααααααααΆαα ααΌαααα
|
|
ααΆααΈααααΉαααααααΈα α¦ ααααΆ αααα·α
|
|
α’αααααα
αααα»αααααα αα·αααΎααααΈα²ααααααα
|
|
ααΎααα
ααΆαααΆααααααα Ganges
|
|
αααα Pennsylvania ααΆαααΈααααααΈα¨ ααααααΌ
|
|
α±ααα’ααα αααααΆααααααΆααααααααα’ααα
|
|
αααα»α VIP α―α’ααααα·αααα
|
|
αααΌαα·αα’αααααααααααααααα
|
|
α‘αΎα ααΎαα·αααΆααΆαααα’α½αα
ααα’αα αα·α
|
|
ααααΆαα’α α’α ααααα»ααΆ αααα αΆαααααα
αααα
ααα
|
|
αααα»ααα·α
αα
ααΆαααααααα ααΆα
|
|
ααααα»ααΆ ααααΎα²αααα·αααααααΆααααΆααααααΎα
|
|
ααααα»α
αααααΆααααααααΎααΉαααΆαααΎα
|
|
αα½αααααααΆααααΆααααααα
|
|
ααΆαα²ααααΉαααΆ ααΆααΆααΉα ααααα
|
|
αα½α
α αΎαααααααααα
αααα»ααααααα
|
|
αααααααΆαααΆαααααααα’αααΎαα»αααα½αααα10 June,
|
|
ααΆααααααΆαααΉααααααΌαααααΌααααααααα½αααΆααΆααααΆα αα·α
|
|
αα»ααααα·α αααααΎααΆαααΆααα
ααΆαααααα½α
|
|
αααα
ααΆαααΆαααα»αααΎαααααΆα !
|
|
αααα
ααααΈαααα»αα’αααααααα»α β αααααααα»αααα·α
|
|
ααααααα·ααΈPosted by SEATV News 24
|
|
# Entry 46417 - TD2_VISA
|
|
α’αααααα»ααΆαααααααΆ αα·ααΆα ααααααα»ααΆαααααααΆ
|
|
αα·αααααααΆααΎα αα»αααααααααΎαααΆαααΆααααααααΆα
|
|
ααΆ αα½ααααααα αααααΆαα·ααΆα α’α
α·αααααααα
|
|
KHTOEMHomeααααααΆαα’ααααααΆαα·Content ααα ααΆα
|
|
M0DMT01B64AUS6105088F3109269CNAKAAA6
|
|
αααααααααΆαααααΊααΎαααΆαα·ααααΆαααααα»α
|
|
ααααααααααααααααα!αα
ααααα·ααΆααααααΆαααΆα
|
|
V<INDTITH<<SAMNANG<<MALY<<<<<<<<<<<<
|
|
ααΈα‘ααααΆαααΆααααΆααααβ¦AKP ααααααα ααααααΈα‘α§
|
|
ααΆαα½αααααΌα α¬α’αα? α
ααααΎαα ααΆαααΊ
|
|
αααααααΆ ααΆαααΆα αα·αα’αα·αααααα»ααΆαααααΆα
|
A large-scale synthetic dataset for training OCR models on Khmer and English text. This dataset contains 5 million high-quality synthetic images of text lines.
from datasets import load_dataset
dataset = load_dataset("mrrtmob/km_en_image_line")
# Access an example
example = dataset['train'][0]
image = example['image'] # PIL Image
text = example['text'] # str
kiri-ocr train \
--hf-dataset mrrtmob/km_en_image_line \
--epochs 50 \
--batch-size 32
@dataset{km_en_image_line,
author = {mrrtmob},
title = {Khmer-English Image Line Dataset},
year = {2026},
publisher = {Blizzer},
howpublished = {\url{https://huggingface.co/datasets/mrrtmob/km_en_image_line}}
}
CC BY 4.0