--- license: mit language: - en --- # Ettin Mid-training Data [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Paper](https://img.shields.io/badge/Paper-Arxiv-red)](https://arxiv.org/abs/2507.11412) [![Models](https://img.shields.io/badge/🤗%20Hugging%20Face-12%20Models-blue)](https://huggingface.co/jhu-clsp) [![GitHub](https://img.shields.io/badge/GitHub-Code-black)](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) > **Phase 2 of 3**: Higher-quality filtered data with context extension (250B tokens) used for mid-training of Ettin models. This dataset contains the mid-training phase data used to train all [Ettin encoder and decoder models](https://huggingface.co/collections/jhu-clsp/encoders-vs-decoders-the-ettin-suite-686303e16142257eed8e6aeb). This phase focuses on **higher-quality filtered data** and **context length extension to 8K tokens**. The data is provided in **MDS format** ready for use with [Composer](https://github.com/mosaicml/composer) and the [ModernBERT training repository](https://github.com/answerdotai/ModernBERT). ## 📊 Data Composition | Data Source | Tokens (B) | Percentage | Description | |:------------|:-----------|:-----------|:------------| | DCLM (Dolmino) | 175.5 | 70.4% | High-quality filtered web crawl | | Starcoder | 38.4 | 15.4% | Code repositories and files | | Math (Dolmino) | 10.4 | 4.2% | Mathematical content (filtered) | | PeS2o | 8.3 | 3.3% | Scientific papers | | Reddit | 6.2 | 2.5% | Social discussion threads | | Arxiv | 4.1 | 1.6% | Academic preprints | | StackExchange (Dolmino) | 2.7 | 1.1% | Q&A forums (filtered) | | Tulu Flan | 2.4 | 1.0% | Instruction-following data | | Books | 0.8 | 0.3% | Literature and reference books | | Wikipedia | 0.5 | 0.2% | Encyclopedia articles | | **Total** | **249.3** | **100.0%** | Quality-focused mixture | ## 🔧 Key Changes from Pre-training ### Data Quality Improvements - **Filtered DCLM**: Using Dolmino-filtered version instead of raw DCLM - **Enhanced Math**: Dolmino-filtered mathematical content - **Curated StackExchange**: Higher-quality Q&A content - **Removed Noisy Sources**: Dropped CC Head, CC News, and general StackExchange ### Technical Improvements - **Context Extension**: Increased from 1K to 8K token sequences - **RoPE Updates**: Modified positional encoding for longer context - **Learning Schedule**: Inverse square root decay from peak LR ## 🚀 Usage For pre-training see the ModernBERT repo: https://github.com/AnswerDotAI/ModernBERT ### Direct Access ```python from streaming import StreamingDataset # Load the streaming dataset dataset = StreamingDataset( remote='https://huggingface.co/datasets/jhu-clsp/ettin-extension-data', local='/tmp/ettin-extension-data', shuffle=True ) # Access samples (note: these will be longer sequences) for sample in dataset: text = sample['text'] # Up to 8K tokens # Process your data... ``` ## 📁 Structure Each folder contains filtered, higher-quality data sources in MDS format: - `arxiv/` - Academic papers from ArXiv - `books/` - Literature and reference books - `dclm_dolmino/` - Dolmino-filtered web crawl data (primary source) - `math_dolmino/` - Filtered mathematical content - `pes2o/` - Scientific papers - `reddit/` - Reddit discussion threads - `stackexchange_dolmino/` - Filtered StackExchange Q&A - `starcoder/` - Code from GitHub repositories - `tulu_flan/` - Instruction-following examples - `wikipedia/` - Wikipedia articles ## 🔗 Related Resources - **Models**: [Ettin Model Suite](https://huggingface.co/collections/jhu-clsp/encoders-vs-decoders-the-ettin-suite-686303e16142257eed8e6aeb) (17M-1B parameters) - **Phase 1**: [Pre-training Data](https://huggingface.co/datasets/jhu-clsp/ettin-pretraining-data) (1.7T tokens) - **Phase 3**: [Decay Phase Data](https://huggingface.co/datasets/jhu-clsp/ettin-decay-data) (50B tokens) - **Training Order**: [Batch-level Data Order](https://huggingface.co/datasets/jhu-clsp/ettin-data-order) - **Paper**: [Arxiv link](https://arxiv.org/abs/2507.11412) - **Code**: [GitHub Repository](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) ## Citation ```bibtex @misc{weller2025seqvsseqopen, title={Seq vs Seq: An Open Suite of Paired Encoders and Decoders}, author={Orion Weller and Kathryn Ricci and Marc Marone and Antoine Chaffin and Dawn Lawrie and Benjamin Van Durme}, year={2025}, eprint={2507.11412}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2507.11412}, } ```