| # """ | |
| # Crop upper boddy in every video frame, square bounding box is averaged among all frames and fixed. | |
| # """ | |
| # import os | |
| # import cv2 | |
| # import argparse | |
| # from tqdm import tqdm | |
| # import face_recognition | |
| # import torch | |
| # import util | |
| # import numpy as np | |
| # import face_detection | |
| # def crop_per_image(data_dir, dest_size, crop_level): | |
| # fa = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cuda') | |
| # image_list = util.get_file_list(os.path.join(data_dir, 'full')) | |
| # batch_size = 5 | |
| # frames = [] | |
| # for i in tqdm(range(len(image_list))): | |
| # frame = face_recognition.load_image_file(image_list[i]) | |
| # frames.append(frame) | |
| # H, W, _ = frames[0].shape | |
| # batches = [frames[i:i + batch_size] for i in range(0, len(frames), batch_size)] | |
| # for idx in tqdm(range(len(batches))): | |
| # fb = batches[idx] | |
| # preds = fa.get_detections_for_batch(np.asarray(fb)) | |
| # for j, f in enumerate(preds): | |
| # if f is None: | |
| # print('no face in image {}'.format(idx * batch_size + j)) | |
| # else: | |
| # left, top, right, bottom = f | |
| # height = bottom - top | |
| # width = right - left | |
| # crop_size = int(height * crop_level) | |
| # horizontal_delta = (crop_size - width) // 2 | |
| # vertical_delta = (crop_size - height) // 2 | |
| # left = max(left - horizontal_delta, 0) | |
| # right = min(right + horizontal_delta, W) | |
| # top = max(top - int(vertical_delta * 0.5), 0) | |
| # bottom = min(bottom + int(vertical_delta * 1.5), H) | |
| # crop_f = cv2.imread(image_list[idx * batch_size + j]) | |
| # crop_f = crop_f[top:bottom, left:right] | |
| # crop_f = cv2.resize(crop_f, (dest_size, dest_size), interpolation=cv2.INTER_AREA) | |
| # cv2.imwrite(os.path.join(data_dir, 'crop', os.path.basename(image_list[idx * batch_size + j])), crop_f) | |
| # if __name__ == '__main__': | |
| # parser = argparse.ArgumentParser(description='Process some integers.') | |
| # parser.add_argument('--data_dir', type=str, default=None) | |
| # parser.add_argument('--dest_size', type=int, default=256) | |
| # parser.add_argument('--crop_level', type=float, default=1.0, help='Adjust crop image size.') | |
| # parser.add_argument('--vertical_adjust', type=float, default=0.3, help='Adjust vertical location of portrait in image.') | |
| # args = parser.parse_args() | |
| # util.create_dir(os.path.join(args.data_dir,'crop')) | |
| # util.create_dir(os.path.join(args.data_dir, 'crop_region')) | |
| # crop_per_image(args.data_dir, dest_size=args.dest_size, crop_level=args.crop_level) | |
| import os | |
| import cv2 | |
| import argparse | |
| from tqdm import tqdm | |
| import face_recognition | |
| import numpy as np | |
| import face_detection | |
| import util | |
| def crop_per_frame_and_make_video(data_dir, dest_size, crop_level, video_out_path, fps=30): | |
| # Initialize face alignment | |
| fa = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cuda') | |
| # Get list of images (frames) | |
| image_list = util.get_file_list(os.path.join(data_dir, 'full')) | |
| batch_size = 5 | |
| frames = [] | |
| # Load frames | |
| for image_path in tqdm(image_list, desc='Loading images'): | |
| frame = cv2.imread(image_path) | |
| frames.append(frame) | |
| H, W, _ = frames[0].shape | |
| batches = [frames[i:i + batch_size] for i in range(0, len(frames), batch_size)] | |
| cropped_frames = [] | |
| for idx, fb in enumerate(tqdm(batches, desc='Processing batches')): | |
| preds = fa.get_detections_for_batch(np.asarray(fb)) | |
| for j, f in enumerate(preds): | |
| if f is None: | |
| print(f'No face in image {idx * batch_size + j}') | |
| continue # Skip frames with no detected face | |
| left, top, right, bottom = f | |
| height = bottom - top | |
| width = right - left | |
| crop_size = int(height * crop_level) | |
| horizontal_delta = (crop_size - width) // 2 | |
| vertical_delta = (crop_size - height) // 2 | |
| left = max(left - horizontal_delta, 0) | |
| right = min(right + horizontal_delta, W) | |
| top = max(top - int(vertical_delta * 0.5), 0) | |
| bottom = min(bottom + int(vertical_delta * 1.5), H) | |
| crop_f = fb[j][top:bottom, left:right] | |
| crop_f = cv2.resize(crop_f, (dest_size, dest_size), interpolation=cv2.INTER_AREA) | |
| cropped_frames.append(crop_f) | |
| # Define the codec and create VideoWriter object | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(video_out_path, fourcc, fps, (dest_size, dest_size)) | |
| # Write frames to video | |
| for frame in tqdm(cropped_frames, desc='Compiling video'): | |
| out.write(frame) | |
| # Release everything when job is finished | |
| out.release() | |
| cv2.destroyAllWindows() | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser(description='Crop video frames and compile into a video.') | |
| parser.add_argument('--data_dir', type=str, required=True, help='Directory with video frames to process.') | |
| parser.add_argument('--dest_size', type=int, default=256, help='Destination size of cropped images.') | |
| parser.add_argument('--crop_level', type=float, default=1.0, help='Adjust crop size relative to face detection.') | |
| parser.add_argument('--video_out_path', type=str, required=True, help='Output path for the resulting video.') | |
| parser.add_argument('--fps', type=int, default=30, help='Frames per second for the output video.') | |
| args = parser.parse_args() | |
| util.create_dir(os.path.join(args.data_dir, 'crop')) | |
| crop_per_frame_and_make_video(args.data_dir, dest_size=args.dest_size, crop_level=args.crop_level, video_out_path=args.video_out_path, fps=args.fps) | |