--- license: cc-by-4.0 configs: - config_name: default data_files: - split: all_samples path: data/all_samples-* dataset_info: features: - name: Base_2_2/Zone/CellData/diffusion_coefficient list: float32 - name: Base_2_2/Zone/CellData/flow list: float32 - name: Global/forcing_magnitude list: float32 splits: - name: all_samples num_bytes: 6554400000 num_examples: 50000 download_size: 3321884222 dataset_size: 6554400000 --- Example of usage: ```python import torch from plaid.bridges import huggingface_bridge as hfb from torch.utils.data import DataLoader def reshape_all(batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Helper function that reshapes the flattened fields into images of sizes (128, 128).""" batch["diffusion_coefficient"] = batch["diffusion_coefficient"].reshape( -1, 128, 128 ) batch["flow"] = batch["flow"].reshape(-1, 128, 128) return batch # Load the dataset from the hub ds = hfb.load_dataset_from_hub( repo_id="Nionio/PDEBench_2D_DarcyFlow", split="all_samples" ) # Rename the features ds = ds.rename_columns( { "Base_2_2/Zone/CellData/diffusion_coefficient": "diffusion_coefficient", "Base_2_2/Zone/CellData/flow": "flow", "Global/forcing_magnitude": "forcing", } ) # Convert to torch ds = ds.with_format("torch") # Reshape fields ds = ds.map(reshape_all, batched=True) # Example of usage with a DataLoader dl = DataLoader(ds, batch_size=32, shuffle=True) for batch in dl: for k, v in batch.items(): print(k, v.shape) break ```