Upload ModernBERT model
Browse files- 1_Pooling/config.json +10 -0
- README.md +559 -0
- added_tokens.json +7 -0
- config.json +48 -0
- config_sentence_transformers.json +14 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 512,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- dense
|
| 7 |
+
- generated_from_trainer
|
| 8 |
+
- dataset_size:58800
|
| 9 |
+
- loss:MultipleNegativesRankingLoss
|
| 10 |
+
base_model: Shuu12121/CodeModernBERT-Finch
|
| 11 |
+
widget:
|
| 12 |
+
- source_sentence: 'Returns boolean indicating whether the requestUrl matches against
|
| 13 |
+
the paths configured.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@param requestedUrl - url requested by user
|
| 17 |
+
|
| 18 |
+
@param opts - unless configuration
|
| 19 |
+
|
| 20 |
+
@returns {boolean}'
|
| 21 |
+
sentences:
|
| 22 |
+
- "def xmoe2_v1_l4k_global_only():\n \"\"\"\"\"\"\n hparams = xmoe2_v1_l4k()\n\
|
| 23 |
+
\ hparams.decoder_layers = [\n \"att\" if l == \"local_att\" else l for\
|
| 24 |
+
\ l in hparams.decoder_layers]\n return hparams"
|
| 25 |
+
- "function matchesPath(requestedUrl, opts) {\n var paths = !opts.path || Array.isArray(opts.path)\
|
| 26 |
+
\ ?\n opts.path : [opts.path];\n\n if (paths) {\n return paths.some(function(p)\
|
| 27 |
+
\ {\n return (typeof p === 'string' && p === requestedUrl.pathname) ||\n\
|
| 28 |
+
\ (p instanceof RegExp && !! p.exec(requestedUrl.pathname));\n });\n\
|
| 29 |
+
\ }\n\n return false;\n}"
|
| 30 |
+
- "public static function factory($accessToken, $currentTeam)\n {\n $client\
|
| 31 |
+
\ = Client::factory($accessToken);\n\n return new self($client, $currentTeam);\n\
|
| 32 |
+
\ }"
|
| 33 |
+
- source_sentence: '// New creates a new ImageGraphics including an image.RGBA of
|
| 34 |
+
dimension w x h
|
| 35 |
+
|
| 36 |
+
// with background bgcol. If font is nil it will use a builtin font.
|
| 37 |
+
|
| 38 |
+
// If fontsize is empty useful default are used.'
|
| 39 |
+
sentences:
|
| 40 |
+
- "func New(width, height int, bgcol color.RGBA, font *truetype.Font, fontsize map[chart.FontSize]float64)\
|
| 41 |
+
\ *ImageGraphics {\n\timg := image.NewRGBA(image.Rect(0, 0, width, height))\n\t\
|
| 42 |
+
gc := draw2dimg.NewGraphicContext(img)\n\tgc.SetLineJoin(draw2d.BevelJoin)\n\t\
|
| 43 |
+
gc.SetLineCap(draw2d.SquareCap)\n\tgc.SetStrokeColor(image.Black)\n\tgc.SetFillColor(bgcol)\n\
|
| 44 |
+
\tgc.Translate(0.5, 0.5)\n\tgc.Clear()\n\tif font == nil {\n\t\tfont = defaultFont\n\
|
| 45 |
+
\t}\n\tif len(fontsize) == 0 {\n\t\tfontsize = ConstructFontSizes(13)\n\t}\n\t\
|
| 46 |
+
return &ImageGraphics{Image: img, x0: 0, y0: 0, w: width, h: height,\n\t\tbg:\
|
| 47 |
+
\ bgcol, gc: gc, font: font, fs: fontsize}\n}"
|
| 48 |
+
- "public static void requestDataLogsForApp(final Context context, final UUID appUuid)\
|
| 49 |
+
\ {\n final Intent requestIntent = new Intent(INTENT_DL_REQUEST_DATA);\n\
|
| 50 |
+
\ requestIntent.putExtra(APP_UUID, appUuid);\n context.sendBroadcast(requestIntent);\n\
|
| 51 |
+
\ }"
|
| 52 |
+
- "final protected function setWriteMode($mode)\n {\n if (!in_array($mode,\
|
| 53 |
+
\ [static::WRITE_MODE_INSERT, static::WRITE_MODE_UPSERT, static::WRITE_MODE_UPDATE]))\
|
| 54 |
+
\ {\n throw new \\InvalidArgumentException(sprintf('Passed write mode\
|
| 55 |
+
\ \"%s\" is invalid!', $mode));\n }\n $this->writeMode = $mode;\n\
|
| 56 |
+
\ }"
|
| 57 |
+
- source_sentence: 'Builds the path for a closed arc, returning a PolygonOptions that
|
| 58 |
+
can be
|
| 59 |
+
|
| 60 |
+
further customised before use.
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@param center
|
| 64 |
+
|
| 65 |
+
@param start
|
| 66 |
+
|
| 67 |
+
@param end
|
| 68 |
+
|
| 69 |
+
@param arcType Pass in either ArcType.CHORD or ArcType.ROUND
|
| 70 |
+
|
| 71 |
+
@return PolygonOptions with the paths element populated.'
|
| 72 |
+
sentences:
|
| 73 |
+
- "function getJavaScriptCallbackParameterListSimple(parameters) {\n var result\
|
| 74 |
+
\ = []\n\n parameters.forEach(function(parameter){\n if (!parameter.out)\
|
| 75 |
+
\ return\n result.push(\"/*\" + getIdlType(parameter.type) + \"*/ \"+ parameter.name)\n\
|
| 76 |
+
\ })\n\n return result.join(\", \")\n}"
|
| 77 |
+
- "public Color getBackground() {\r\n\t\tpredraw();\r\n\t\tFloatBuffer buffer =\
|
| 78 |
+
\ BufferUtils.createFloatBuffer(16);\r\n\t\tGL.glGetFloat(SGL.GL_COLOR_CLEAR_VALUE,\
|
| 79 |
+
\ buffer);\r\n\t\tpostdraw();\r\n\r\n\t\treturn new Color(buffer);\r\n\t}"
|
| 80 |
+
- "public static final PolygonOptions buildClosedArc(LatLong center, LatLong start,\
|
| 81 |
+
\ LatLong end, ArcType arcType) {\n MVCArray res = buildArcPoints(center,\
|
| 82 |
+
\ start, end);\n if (ArcType.ROUND.equals(arcType)) {\n res.push(center);\n\
|
| 83 |
+
\ }\n return new PolygonOptions().paths(res);\n }"
|
| 84 |
+
- source_sentence: "Read data from a spread sheet. Return the data in a dict with\n\
|
| 85 |
+
\ column numbers as keys.\n\n sheet: xlrd.sheet.Sheet instance\n \
|
| 86 |
+
\ Ready for use.\n\n startstops: list\n Four StartStop objects defining\
|
| 87 |
+
\ the data to read. See\n :func:`~channelpack.pullxl.prepread`.\n\n \
|
| 88 |
+
\ usecols: str or seqence of ints or None\n The columns to use, 0-based.\
|
| 89 |
+
\ 0 is the spread sheet column\n \"A\". Can be given as a string also -\
|
| 90 |
+
\ 'C:E, H' for columns C, D,\n E and H.\n\n Values in the returned dict\
|
| 91 |
+
\ are numpy arrays. Types are set based on\n the types in the spread sheet."
|
| 92 |
+
sentences:
|
| 93 |
+
- "public function handleScanNotify(callable $callback)\n {\n $notify\
|
| 94 |
+
\ = $this->getNotify();\n\n if (!$notify->isValid()) {\n throw\
|
| 95 |
+
\ new FaultException('Invalid request payloads.', 400);\n }\n\n \
|
| 96 |
+
\ $notify = $notify->getNotify();\n\n try {\n $prepayId = call_user_func_array($callback,\
|
| 97 |
+
\ [$notify->get('product_id'), $notify->get('openid'), $notify]);\n \
|
| 98 |
+
\ $response = [\n 'return_code' => 'SUCCESS',\n \
|
| 99 |
+
\ 'appid' => $this->merchant->app_id,\n 'mch_id' =>\
|
| 100 |
+
\ $this->merchant->merchant_id,\n 'nonce_str' => uniqid(),\n\
|
| 101 |
+
\ 'prepay_id' => strval($prepayId),\n 'result_code'\
|
| 102 |
+
\ => 'SUCCESS',\n ];\n $response['sign'] = generate_sign($response,\
|
| 103 |
+
\ $this->merchant->key);\n } catch (\\Exception $e) {\n $response\
|
| 104 |
+
\ = [\n 'return_code' => 'SUCCESS',\n 'return_msg'\
|
| 105 |
+
\ => $e->getCode(),\n 'result_code' => 'FAIL',\n \
|
| 106 |
+
\ 'err_code_des' => $e->getMessage(),\n ];\n }\n\n \
|
| 107 |
+
\ return new Response(XML::build($response));\n }"
|
| 108 |
+
- "def _sheet_asdict(sheet, startstops, usecols=None):\n \"\"\"\n \"\"\"\n\
|
| 109 |
+
\n _, _, start, stop = startstops\n usecols = _sanitize_usecols(usecols)\n\
|
| 110 |
+
\n if usecols is not None:\n iswithin = start.col <= min(usecols) and\
|
| 111 |
+
\ stop.col > max(usecols)\n mess = 'Column in usecols outside defined data\
|
| 112 |
+
\ range, got '\n assert iswithin, mess + str(usecols)\n else: \
|
| 113 |
+
\ # usecols is None.\n usecols = tuple(range(start.col,\
|
| 114 |
+
\ stop.col))\n\n # cols = usecols or range(start.col, stop.col)\n D = dict()\n\
|
| 115 |
+
\n for c in usecols:\n cells = sheet.col(c, start_rowx=start.row, end_rowx=stop.row)\n\
|
| 116 |
+
\ types = set([cell.ctype for cell in cells])\n\n # Replace empty\
|
| 117 |
+
\ values with nan if appropriate:\n if (not types - NANABLE) and xlrd.XL_CELL_NUMBER\
|
| 118 |
+
\ in types:\n D[c] = np.array([np.nan if cell.value == '' else cell.value\n\
|
| 119 |
+
\ for cell in cells])\n elif xlrd.XL_CELL_DATE\
|
| 120 |
+
\ in types:\n dm = sheet.book.datemode\n vals = []\n \
|
| 121 |
+
\ for cell in cells:\n if cell.ctype == xlrd.XL_CELL_DATE:\n\
|
| 122 |
+
\ dtuple = xlrd.xldate_as_tuple(cell.value, dm)\n \
|
| 123 |
+
\ vals.append(datetime.datetime(*dtuple))\n elif cell.ctype\
|
| 124 |
+
\ in NONABLES:\n vals.append(None)\n else:\n\
|
| 125 |
+
\ vals.append(cell.value)\n D[c] = np.array(vals)\n\
|
| 126 |
+
\ else:\n vals = [None if cell.ctype in NONABLES else cell.value\n\
|
| 127 |
+
\ for cell in cells]\n D[c] = np.array(vals)\n\n\
|
| 128 |
+
\ return D"
|
| 129 |
+
- "func (o Option) RequiresOption(name string) bool {\n\tfor _, o := range o.Requires\
|
| 130 |
+
\ {\n\t\tif o == name {\n\t\t\treturn true\n\t\t}\n\t}\n\n\treturn false\n}"
|
| 131 |
+
- source_sentence: '// reBuild partially rebuilds a site given the filesystem events.
|
| 132 |
+
|
| 133 |
+
// It returns whetever the content source was changed.
|
| 134 |
+
|
| 135 |
+
// TODO(bep) clean up/rewrite this method.'
|
| 136 |
+
sentences:
|
| 137 |
+
- "func WebPageImageResolver(doc *goquery.Document) ([]candidate, int) {\n\timgs\
|
| 138 |
+
\ := doc.Find(\"img\")\n\n\tvar candidates []candidate\n\tsignificantSurface :=\
|
| 139 |
+
\ 320 * 200\n\tsignificantSurfaceCount := 0\n\tsrc := \"\"\n\timgs.Each(func(i\
|
| 140 |
+
\ int, tag *goquery.Selection) {\n\t\tvar surface int\n\t\tsrc = getImageSrc(tag)\n\
|
| 141 |
+
\t\tif src == \"\" {\n\t\t\treturn\n\t\t}\n\n\t\twidth, _ := tag.Attr(\"width\"\
|
| 142 |
+
)\n\t\theight, _ := tag.Attr(\"height\")\n\t\tif width != \"\" {\n\t\t\tw, _ :=\
|
| 143 |
+
\ strconv.Atoi(width)\n\t\t\tif height != \"\" {\n\t\t\t\th, _ := strconv.Atoi(height)\n\
|
| 144 |
+
\t\t\t\tsurface = w * h\n\t\t\t} else {\n\t\t\t\tsurface = w\n\t\t\t}\n\t\t} else\
|
| 145 |
+
\ {\n\t\t\tif height != \"\" {\n\t\t\t\tsurface, _ = strconv.Atoi(height)\n\t\t\
|
| 146 |
+
\t} else {\n\t\t\t\tsurface = 0\n\t\t\t}\n\t\t}\n\n\t\tif surface > significantSurface\
|
| 147 |
+
\ {\n\t\t\tsignificantSurfaceCount++\n\t\t}\n\n\t\ttagscore := score(tag)\n\t\t\
|
| 148 |
+
if tagscore >= 0 {\n\t\t\tc := candidate{\n\t\t\t\turl: src,\n\t\t\t\tsurface:\
|
| 149 |
+
\ surface,\n\t\t\t\tscore: score(tag),\n\t\t\t}\n\t\t\tcandidates = append(candidates,\
|
| 150 |
+
\ c)\n\t\t}\n\t})\n\n\tif len(candidates) == 0 {\n\t\treturn nil, 0\n\t}\n\n\t\
|
| 151 |
+
return candidates, significantSurfaceCount\n\n}"
|
| 152 |
+
- "@SuppressWarnings(\"rawtypes\")\n\tpublic void open(Map conf, TopologyContext\
|
| 153 |
+
\ context,\n\t\t\tSpoutOutputCollector collector) {\n\t\tif(this.jmsProvider ==\
|
| 154 |
+
\ null){\n\t\t\tthrow new IllegalStateException(\"JMS provider has not been set.\"\
|
| 155 |
+
);\n\t\t}\n\t\tif(this.tupleProducer == null){\n\t\t\tthrow new IllegalStateException(\"\
|
| 156 |
+
JMS Tuple Producer has not been set.\");\n\t\t}\n\t\tInteger topologyTimeout =\
|
| 157 |
+
\ (Integer)conf.get(\"topology.message.timeout.secs\");\n\t\t// TODO fine a way\
|
| 158 |
+
\ to get the default timeout from storm, so we're not hard-coding to 30 seconds\
|
| 159 |
+
\ (it could change)\n\t\ttopologyTimeout = topologyTimeout == null ? 30 : topologyTimeout;\n\
|
| 160 |
+
\t\tif( (topologyTimeout.intValue() * 1000 )> this.recoveryPeriod){\n\t\t LOG.warn(\"\
|
| 161 |
+
*** WARNING *** : \" +\n\t\t \t\t\"Recovery period (\"+ this.recoveryPeriod\
|
| 162 |
+
\ + \" ms.) is less then the configured \" +\n\t\t \t\t\"'topology.message.timeout.secs'\
|
| 163 |
+
\ of \" + topologyTimeout + \n\t\t \t\t\" secs. This could lead to a message\
|
| 164 |
+
\ replay flood!\");\n\t\t}\n\t\tthis.queue = new LinkedBlockingQueue<Message>();\n\
|
| 165 |
+
\t\tthis.toCommit = new TreeSet<JmsMessageID>();\n this.pendingMessages\
|
| 166 |
+
\ = new HashMap<JmsMessageID, Message>();\n\t\tthis.collector = collector;\n\t\
|
| 167 |
+
\ttry {\n\t\t\tConnectionFactory cf = this.jmsProvider.connectionFactory();\n\t\
|
| 168 |
+
\t\tDestination dest = this.jmsProvider.destination();\n\t\t\tthis.connection\
|
| 169 |
+
\ = cf.createConnection();\n\t\t\tthis.session = connection.createSession(false,\n\
|
| 170 |
+
\t\t\t\t\tthis.jmsAcknowledgeMode);\n\t\t\tMessageConsumer consumer = session.createConsumer(dest);\n\
|
| 171 |
+
\t\t\tconsumer.setMessageListener(this);\n\t\t\tthis.connection.start();\n\t\t\
|
| 172 |
+
\tif (this.isDurableSubscription() && this.recoveryPeriod > 0){\n\t\t\t this.recoveryTimer\
|
| 173 |
+
\ = new Timer();\n\t\t\t this.recoveryTimer.scheduleAtFixedRate(new RecoveryTask(),\
|
| 174 |
+
\ 10, this.recoveryPeriod);\n\t\t\t}\n\t\t\t\n\t\t} catch (Exception e) {\n\t\t\
|
| 175 |
+
\tLOG.warn(\"Error creating JMS connection.\", e);\n\t\t}\n\n\t}"
|
| 176 |
+
- "func (s *Site) processPartial(events []fsnotify.Event) (whatChanged, error) {\n\
|
| 177 |
+
\n\tevents = s.filterFileEvents(events)\n\tevents = s.translateFileEvents(events)\n\
|
| 178 |
+
\n\ts.Log.DEBUG.Printf(\"Rebuild for events %q\", events)\n\n\th := s.h\n\n\t\
|
| 179 |
+
// First we need to determine what changed\n\n\tvar (\n\t\tsourceChanged \
|
| 180 |
+
\ = []fsnotify.Event{}\n\t\tsourceReallyChanged = []fsnotify.Event{}\n\t\tcontentFilesChanged\
|
| 181 |
+
\ []string\n\t\ttmplChanged = []fsnotify.Event{}\n\t\tdataChanged \
|
| 182 |
+
\ = []fsnotify.Event{}\n\t\ti18nChanged = []fsnotify.Event{}\n\t\t\
|
| 183 |
+
shortcodesChanged = make(map[string]bool)\n\t\tsourceFilesChanged = make(map[string]bool)\n\
|
| 184 |
+
\n\t\t// prevent spamming the log on changes\n\t\tlogger = helpers.NewDistinctFeedbackLogger()\n\
|
| 185 |
+
\t)\n\n\tcachePartitions := make([]string, len(events))\n\n\tfor i, ev := range\
|
| 186 |
+
\ events {\n\t\tcachePartitions[i] = resources.ResourceKeyPartition(ev.Name)\n\
|
| 187 |
+
\n\t\tif s.isContentDirEvent(ev) {\n\t\t\tlogger.Println(\"Source changed\", ev)\n\
|
| 188 |
+
\t\t\tsourceChanged = append(sourceChanged, ev)\n\t\t}\n\t\tif s.isLayoutDirEvent(ev)\
|
| 189 |
+
\ {\n\t\t\tlogger.Println(\"Template changed\", ev)\n\t\t\ttmplChanged = append(tmplChanged,\
|
| 190 |
+
\ ev)\n\n\t\t\tif strings.Contains(ev.Name, \"shortcodes\") {\n\t\t\t\tshortcode\
|
| 191 |
+
\ := filepath.Base(ev.Name)\n\t\t\t\tshortcode = strings.TrimSuffix(shortcode,\
|
| 192 |
+
\ filepath.Ext(shortcode))\n\t\t\t\tshortcodesChanged[shortcode] = true\n\t\t\t\
|
| 193 |
+
}\n\t\t}\n\t\tif s.isDataDirEvent(ev) {\n\t\t\tlogger.Println(\"Data changed\"\
|
| 194 |
+
, ev)\n\t\t\tdataChanged = append(dataChanged, ev)\n\t\t}\n\t\tif s.isI18nEvent(ev)\
|
| 195 |
+
\ {\n\t\t\tlogger.Println(\"i18n changed\", ev)\n\t\t\ti18nChanged = append(dataChanged,\
|
| 196 |
+
\ ev)\n\t\t}\n\t}\n\n\t// These in memory resource caches will be rebuilt on demand.\n\
|
| 197 |
+
\tfor _, s := range s.h.Sites {\n\t\ts.ResourceSpec.ResourceCache.DeletePartitions(cachePartitions...)\n\
|
| 198 |
+
\t}\n\n\tif len(tmplChanged) > 0 || len(i18nChanged) > 0 {\n\t\tsites := s.h.Sites\n\
|
| 199 |
+
\t\tfirst := sites[0]\n\n\t\ts.h.init.Reset()\n\n\t\t// TOD(bep) globals clean\n\
|
| 200 |
+
\t\tif err := first.Deps.LoadResources(); err != nil {\n\t\t\treturn whatChanged{},\
|
| 201 |
+
\ err\n\t\t}\n\n\t\tfor i := 1; i < len(sites); i++ {\n\t\t\tsite := sites[i]\n\
|
| 202 |
+
\t\t\tvar err error\n\t\t\tdepsCfg := deps.DepsCfg{\n\t\t\t\tLanguage: site.language,\n\
|
| 203 |
+
\t\t\t\tMediaTypes: site.mediaTypesConfig,\n\t\t\t\tOutputFormats: site.outputFormatsConfig,\n\
|
| 204 |
+
\t\t\t}\n\t\t\tsite.Deps, err = first.Deps.ForLanguage(depsCfg, func(d *deps.Deps)\
|
| 205 |
+
\ error {\n\t\t\t\td.Site = &site.Info\n\t\t\t\treturn nil\n\t\t\t})\n\t\t\tif\
|
| 206 |
+
\ err != nil {\n\t\t\t\treturn whatChanged{}, err\n\t\t\t}\n\t\t}\n\t}\n\n\tif\
|
| 207 |
+
\ len(dataChanged) > 0 {\n\t\ts.h.init.data.Reset()\n\t}\n\n\tfor _, ev := range\
|
| 208 |
+
\ sourceChanged {\n\t\tremoved := false\n\n\t\tif ev.Op&fsnotify.Remove == fsnotify.Remove\
|
| 209 |
+
\ {\n\t\t\tremoved = true\n\t\t}\n\n\t\t// Some editors (Vim) sometimes issue\
|
| 210 |
+
\ only a Rename operation when writing an existing file\n\t\t// Sometimes a rename\
|
| 211 |
+
\ operation means that file has been renamed other times it means\n\t\t// it's\
|
| 212 |
+
\ been updated\n\t\tif ev.Op&fsnotify.Rename == fsnotify.Rename {\n\t\t\t// If\
|
| 213 |
+
\ the file is still on disk, it's only been updated, if it's not, it's been moved\n\
|
| 214 |
+
\t\t\tif ex, err := afero.Exists(s.Fs.Source, ev.Name); !ex || err != nil {\n\t\
|
| 215 |
+
\t\t\tremoved = true\n\t\t\t}\n\t\t}\n\t\tif removed && IsContentFile(ev.Name)\
|
| 216 |
+
\ {\n\t\t\th.removePageByFilename(ev.Name)\n\t\t}\n\n\t\tsourceReallyChanged =\
|
| 217 |
+
\ append(sourceReallyChanged, ev)\n\t\tsourceFilesChanged[ev.Name] = true\n\t\
|
| 218 |
+
}\n\n\tfor shortcode := range shortcodesChanged {\n\t\t// There are certain scenarios\
|
| 219 |
+
\ that, when a shortcode changes,\n\t\t// it isn't sufficient to just rerender\
|
| 220 |
+
\ the already parsed shortcode.\n\t\t// One example is if the user adds a new\
|
| 221 |
+
\ shortcode to the content file first,\n\t\t// and then creates the shortcode\
|
| 222 |
+
\ on the file system.\n\t\t// To handle these scenarios, we must do a full reprocessing\
|
| 223 |
+
\ of the\n\t\t// pages that keeps a reference to the changed shortcode.\n\t\t\
|
| 224 |
+
pagesWithShortcode := h.findPagesByShortcode(shortcode)\n\t\tfor _, p := range\
|
| 225 |
+
\ pagesWithShortcode {\n\t\t\tcontentFilesChanged = append(contentFilesChanged,\
|
| 226 |
+
\ p.File().Filename())\n\t\t}\n\t}\n\n\tif len(sourceReallyChanged) > 0 || len(contentFilesChanged)\
|
| 227 |
+
\ > 0 {\n\t\tvar filenamesChanged []string\n\t\tfor _, e := range sourceReallyChanged\
|
| 228 |
+
\ {\n\t\t\tfilenamesChanged = append(filenamesChanged, e.Name)\n\t\t}\n\t\tif\
|
| 229 |
+
\ len(contentFilesChanged) > 0 {\n\t\t\tfilenamesChanged = append(filenamesChanged,\
|
| 230 |
+
\ contentFilesChanged...)\n\t\t}\n\n\t\tfilenamesChanged = helpers.UniqueStrings(filenamesChanged)\n\
|
| 231 |
+
\n\t\tif err := s.readAndProcessContent(filenamesChanged...); err != nil {\n\t\
|
| 232 |
+
\t\treturn whatChanged{}, err\n\t\t}\n\n\t}\n\n\tchanged := whatChanged{\n\t\t\
|
| 233 |
+
source: len(sourceChanged) > 0 || len(shortcodesChanged) > 0,\n\t\tother: len(tmplChanged)\
|
| 234 |
+
\ > 0 || len(i18nChanged) > 0 || len(dataChanged) > 0,\n\t\tfiles: sourceFilesChanged,\n\
|
| 235 |
+
\t}\n\n\treturn changed, nil\n\n}"
|
| 236 |
+
pipeline_tag: sentence-similarity
|
| 237 |
+
library_name: sentence-transformers
|
| 238 |
+
---
|
| 239 |
+
|
| 240 |
+
# SentenceTransformer based on Shuu12121/CodeModernBERT-Finch
|
| 241 |
+
|
| 242 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Finch](https://huggingface.co/Shuu12121/CodeModernBERT-Finch). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 243 |
+
|
| 244 |
+
## Model Details
|
| 245 |
+
|
| 246 |
+
### Model Description
|
| 247 |
+
- **Model Type:** Sentence Transformer
|
| 248 |
+
- **Base model:** [Shuu12121/CodeModernBERT-Finch](https://huggingface.co/Shuu12121/CodeModernBERT-Finch) <!-- at revision cb1142a6a402471e02d11005b239f349c6d79be0 -->
|
| 249 |
+
- **Maximum Sequence Length:** 1024 tokens
|
| 250 |
+
- **Output Dimensionality:** 512 dimensions
|
| 251 |
+
- **Similarity Function:** Cosine Similarity
|
| 252 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 253 |
+
<!-- - **Language:** Unknown -->
|
| 254 |
+
<!-- - **License:** Unknown -->
|
| 255 |
+
|
| 256 |
+
### Model Sources
|
| 257 |
+
|
| 258 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 259 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 260 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 261 |
+
|
| 262 |
+
### Full Model Architecture
|
| 263 |
+
|
| 264 |
+
```
|
| 265 |
+
SentenceTransformer(
|
| 266 |
+
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
|
| 267 |
+
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 268 |
+
)
|
| 269 |
+
```
|
| 270 |
+
|
| 271 |
+
## Usage
|
| 272 |
+
|
| 273 |
+
### Direct Usage (Sentence Transformers)
|
| 274 |
+
|
| 275 |
+
First install the Sentence Transformers library:
|
| 276 |
+
|
| 277 |
+
```bash
|
| 278 |
+
pip install -U sentence-transformers
|
| 279 |
+
```
|
| 280 |
+
|
| 281 |
+
Then you can load this model and run inference.
|
| 282 |
+
```python
|
| 283 |
+
from sentence_transformers import SentenceTransformer
|
| 284 |
+
|
| 285 |
+
# Download from the 🤗 Hub
|
| 286 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 287 |
+
# Run inference
|
| 288 |
+
sentences = [
|
| 289 |
+
'// reBuild partially rebuilds a site given the filesystem events.\n// It returns whetever the content source was changed.\n// TODO(bep) clean up/rewrite this method.',
|
| 290 |
+
'func (s *Site) processPartial(events []fsnotify.Event) (whatChanged, error) {\n\n\tevents = s.filterFileEvents(events)\n\tevents = s.translateFileEvents(events)\n\n\ts.Log.DEBUG.Printf("Rebuild for events %q", events)\n\n\th := s.h\n\n\t// First we need to determine what changed\n\n\tvar (\n\t\tsourceChanged = []fsnotify.Event{}\n\t\tsourceReallyChanged = []fsnotify.Event{}\n\t\tcontentFilesChanged []string\n\t\ttmplChanged = []fsnotify.Event{}\n\t\tdataChanged = []fsnotify.Event{}\n\t\ti18nChanged = []fsnotify.Event{}\n\t\tshortcodesChanged = make(map[string]bool)\n\t\tsourceFilesChanged = make(map[string]bool)\n\n\t\t// prevent spamming the log on changes\n\t\tlogger = helpers.NewDistinctFeedbackLogger()\n\t)\n\n\tcachePartitions := make([]string, len(events))\n\n\tfor i, ev := range events {\n\t\tcachePartitions[i] = resources.ResourceKeyPartition(ev.Name)\n\n\t\tif s.isContentDirEvent(ev) {\n\t\t\tlogger.Println("Source changed", ev)\n\t\t\tsourceChanged = append(sourceChanged, ev)\n\t\t}\n\t\tif s.isLayoutDirEvent(ev) {\n\t\t\tlogger.Println("Template changed", ev)\n\t\t\ttmplChanged = append(tmplChanged, ev)\n\n\t\t\tif strings.Contains(ev.Name, "shortcodes") {\n\t\t\t\tshortcode := filepath.Base(ev.Name)\n\t\t\t\tshortcode = strings.TrimSuffix(shortcode, filepath.Ext(shortcode))\n\t\t\t\tshortcodesChanged[shortcode] = true\n\t\t\t}\n\t\t}\n\t\tif s.isDataDirEvent(ev) {\n\t\t\tlogger.Println("Data changed", ev)\n\t\t\tdataChanged = append(dataChanged, ev)\n\t\t}\n\t\tif s.isI18nEvent(ev) {\n\t\t\tlogger.Println("i18n changed", ev)\n\t\t\ti18nChanged = append(dataChanged, ev)\n\t\t}\n\t}\n\n\t// These in memory resource caches will be rebuilt on demand.\n\tfor _, s := range s.h.Sites {\n\t\ts.ResourceSpec.ResourceCache.DeletePartitions(cachePartitions...)\n\t}\n\n\tif len(tmplChanged) > 0 || len(i18nChanged) > 0 {\n\t\tsites := s.h.Sites\n\t\tfirst := sites[0]\n\n\t\ts.h.init.Reset()\n\n\t\t// TOD(bep) globals clean\n\t\tif err := first.Deps.LoadResources(); err != nil {\n\t\t\treturn whatChanged{}, err\n\t\t}\n\n\t\tfor i := 1; i < len(sites); i++ {\n\t\t\tsite := sites[i]\n\t\t\tvar err error\n\t\t\tdepsCfg := deps.DepsCfg{\n\t\t\t\tLanguage: site.language,\n\t\t\t\tMediaTypes: site.mediaTypesConfig,\n\t\t\t\tOutputFormats: site.outputFormatsConfig,\n\t\t\t}\n\t\t\tsite.Deps, err = first.Deps.ForLanguage(depsCfg, func(d *deps.Deps) error {\n\t\t\t\td.Site = &site.Info\n\t\t\t\treturn nil\n\t\t\t})\n\t\t\tif err != nil {\n\t\t\t\treturn whatChanged{}, err\n\t\t\t}\n\t\t}\n\t}\n\n\tif len(dataChanged) > 0 {\n\t\ts.h.init.data.Reset()\n\t}\n\n\tfor _, ev := range sourceChanged {\n\t\tremoved := false\n\n\t\tif ev.Op&fsnotify.Remove == fsnotify.Remove {\n\t\t\tremoved = true\n\t\t}\n\n\t\t// Some editors (Vim) sometimes issue only a Rename operation when writing an existing file\n\t\t// Sometimes a rename operation means that file has been renamed other times it means\n\t\t// it\'s been updated\n\t\tif ev.Op&fsnotify.Rename == fsnotify.Rename {\n\t\t\t// If the file is still on disk, it\'s only been updated, if it\'s not, it\'s been moved\n\t\t\tif ex, err := afero.Exists(s.Fs.Source, ev.Name); !ex || err != nil {\n\t\t\t\tremoved = true\n\t\t\t}\n\t\t}\n\t\tif removed && IsContentFile(ev.Name) {\n\t\t\th.removePageByFilename(ev.Name)\n\t\t}\n\n\t\tsourceReallyChanged = append(sourceReallyChanged, ev)\n\t\tsourceFilesChanged[ev.Name] = true\n\t}\n\n\tfor shortcode := range shortcodesChanged {\n\t\t// There are certain scenarios that, when a shortcode changes,\n\t\t// it isn\'t sufficient to just rerender the already parsed shortcode.\n\t\t// One example is if the user adds a new shortcode to the content file first,\n\t\t// and then creates the shortcode on the file system.\n\t\t// To handle these scenarios, we must do a full reprocessing of the\n\t\t// pages that keeps a reference to the changed shortcode.\n\t\tpagesWithShortcode := h.findPagesByShortcode(shortcode)\n\t\tfor _, p := range pagesWithShortcode {\n\t\t\tcontentFilesChanged = append(contentFilesChanged, p.File().Filename())\n\t\t}\n\t}\n\n\tif len(sourceReallyChanged) > 0 || len(contentFilesChanged) > 0 {\n\t\tvar filenamesChanged []string\n\t\tfor _, e := range sourceReallyChanged {\n\t\t\tfilenamesChanged = append(filenamesChanged, e.Name)\n\t\t}\n\t\tif len(contentFilesChanged) > 0 {\n\t\t\tfilenamesChanged = append(filenamesChanged, contentFilesChanged...)\n\t\t}\n\n\t\tfilenamesChanged = helpers.UniqueStrings(filenamesChanged)\n\n\t\tif err := s.readAndProcessContent(filenamesChanged...); err != nil {\n\t\t\treturn whatChanged{}, err\n\t\t}\n\n\t}\n\n\tchanged := whatChanged{\n\t\tsource: len(sourceChanged) > 0 || len(shortcodesChanged) > 0,\n\t\tother: len(tmplChanged) > 0 || len(i18nChanged) > 0 || len(dataChanged) > 0,\n\t\tfiles: sourceFilesChanged,\n\t}\n\n\treturn changed, nil\n\n}',
|
| 291 |
+
'func WebPageImageResolver(doc *goquery.Document) ([]candidate, int) {\n\timgs := doc.Find("img")\n\n\tvar candidates []candidate\n\tsignificantSurface := 320 * 200\n\tsignificantSurfaceCount := 0\n\tsrc := ""\n\timgs.Each(func(i int, tag *goquery.Selection) {\n\t\tvar surface int\n\t\tsrc = getImageSrc(tag)\n\t\tif src == "" {\n\t\t\treturn\n\t\t}\n\n\t\twidth, _ := tag.Attr("width")\n\t\theight, _ := tag.Attr("height")\n\t\tif width != "" {\n\t\t\tw, _ := strconv.Atoi(width)\n\t\t\tif height != "" {\n\t\t\t\th, _ := strconv.Atoi(height)\n\t\t\t\tsurface = w * h\n\t\t\t} else {\n\t\t\t\tsurface = w\n\t\t\t}\n\t\t} else {\n\t\t\tif height != "" {\n\t\t\t\tsurface, _ = strconv.Atoi(height)\n\t\t\t} else {\n\t\t\t\tsurface = 0\n\t\t\t}\n\t\t}\n\n\t\tif surface > significantSurface {\n\t\t\tsignificantSurfaceCount++\n\t\t}\n\n\t\ttagscore := score(tag)\n\t\tif tagscore >= 0 {\n\t\t\tc := candidate{\n\t\t\t\turl: src,\n\t\t\t\tsurface: surface,\n\t\t\t\tscore: score(tag),\n\t\t\t}\n\t\t\tcandidates = append(candidates, c)\n\t\t}\n\t})\n\n\tif len(candidates) == 0 {\n\t\treturn nil, 0\n\t}\n\n\treturn candidates, significantSurfaceCount\n\n}',
|
| 292 |
+
]
|
| 293 |
+
embeddings = model.encode(sentences)
|
| 294 |
+
print(embeddings.shape)
|
| 295 |
+
# [3, 512]
|
| 296 |
+
|
| 297 |
+
# Get the similarity scores for the embeddings
|
| 298 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 299 |
+
print(similarities)
|
| 300 |
+
# tensor([[1.0000, 0.6671, 0.2242],
|
| 301 |
+
# [0.6671, 1.0000, 0.3125],
|
| 302 |
+
# [0.2242, 0.3125, 1.0000]])
|
| 303 |
+
```
|
| 304 |
+
|
| 305 |
+
<!--
|
| 306 |
+
### Direct Usage (Transformers)
|
| 307 |
+
|
| 308 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 309 |
+
|
| 310 |
+
</details>
|
| 311 |
+
-->
|
| 312 |
+
|
| 313 |
+
<!--
|
| 314 |
+
### Downstream Usage (Sentence Transformers)
|
| 315 |
+
|
| 316 |
+
You can finetune this model on your own dataset.
|
| 317 |
+
|
| 318 |
+
<details><summary>Click to expand</summary>
|
| 319 |
+
|
| 320 |
+
</details>
|
| 321 |
+
-->
|
| 322 |
+
|
| 323 |
+
<!--
|
| 324 |
+
### Out-of-Scope Use
|
| 325 |
+
|
| 326 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 327 |
+
-->
|
| 328 |
+
|
| 329 |
+
<!--
|
| 330 |
+
## Bias, Risks and Limitations
|
| 331 |
+
|
| 332 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 333 |
+
-->
|
| 334 |
+
|
| 335 |
+
<!--
|
| 336 |
+
### Recommendations
|
| 337 |
+
|
| 338 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 339 |
+
-->
|
| 340 |
+
|
| 341 |
+
## Training Details
|
| 342 |
+
|
| 343 |
+
### Training Dataset
|
| 344 |
+
|
| 345 |
+
#### Unnamed Dataset
|
| 346 |
+
|
| 347 |
+
* Size: 58,800 training samples
|
| 348 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
| 349 |
+
* Approximate statistics based on the first 1000 samples:
|
| 350 |
+
| | sentence_0 | sentence_1 | label |
|
| 351 |
+
|:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
| 352 |
+
| type | string | string | float |
|
| 353 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 55.73 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 179.65 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
| 354 |
+
* Samples:
|
| 355 |
+
| sentence_0 | sentence_1 | label |
|
| 356 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
| 357 |
+
| <code>// CASNext is a non-callback, loop-based version of CAS method.<br>//<br>// Usage is like this:<br>//<br>// var state memcached.CASState<br>// for client.CASNext(vb, key, exp, &state) {<br>// state.Value = some_mutation(state.Value)<br>// }<br>// if state.Err != nil { ... }</code> | <code>func (c *Client) CASNext(vb uint16, k string, exp int, state *CASState) bool {<br> if state.initialized {<br> if !state.Exists {<br> // Adding a new key:<br> if state.Value == nil {<br> state.Cas = 0<br> return false // no-op (delete of non-existent value)<br> }<br> state.resp, state.Err = c.Add(vb, k, 0, exp, state.Value)<br> } else {<br> // Updating / deleting a key:<br> req := &gomemcached.MCRequest{<br> Opcode: gomemcached.DELETE,<br> VBucket: vb,<br> Key: []byte(k),<br> Cas: state.Cas}<br> if state.Value != nil {<br> req.Opcode = gomemcached.SET<br> req.Opaque = 0<br> req.Extras = []byte{0, 0, 0, 0, 0, 0, 0, 0}<br> req.Body = state.Value<br><br> flags := 0<br> exp := 0 // ??? Should we use initialexp here instead?<br> binary.BigEndian.PutUint64(req.Extras, uint64(flags)<<32|uint64(exp))<br> }<br> state.resp, state.Err = c.Send(req)<br> }<br><br> // If the response status is KEY_EEXISTS or NOT_STORED there's a conflict and we'll need to<br> // get the new value (below). Otherwise, we're done (either ...</code> | <code>1.0</code> |
|
| 358 |
+
| <code>// RestoreResourcePools restores a bulk of resource pools, usually from a backup.</code> | <code>func (f *Facade) RestoreResourcePools(ctx datastore.Context, pools []pool.ResourcePool) error {<br> defer ctx.Metrics().Stop(ctx.Metrics().Start("Facade.RestoreResourcePools"))<br> // Do not DFSLock here, ControlPlaneDao does that<br> var alog audit.Logger<br> for _, pool := range pools {<br> alog = f.auditLogger.Message(ctx, "Adding ResourcePool").Action(audit.Add).Entity(&pool)<br> pool.DatabaseVersion = 0<br> if err := f.addResourcePool(ctx, &pool); err != nil {<br> if err == ErrPoolExists {<br> if err := f.updateResourcePool(ctx, &pool); err != nil {<br> glog.Errorf("Could not restore resource pool %s via update: %s", pool.ID, err)<br> return alog.Error(err)<br> }<br> } else {<br> glog.Errorf("Could not restore resource pool %s via add: %s", pool.ID, err)<br> return alog.Error(err)<br> }<br> }<br> alog.Succeeded()<br> }<br> return nil<br>}</code> | <code>1.0</code> |
|
| 359 |
+
| <code>// run starts a goroutine to handle client connects and broadcast events.</code> | <code>func (s *Streamer) run() {<br> go func() {<br> for {<br> select {<br> case cl := <-s.connecting:<br> s.clients[cl] = true<br><br> case cl := <-s.disconnecting:<br> delete(s.clients, cl)<br><br> case event := <-s.event:<br> for cl := range s.clients {<br> // TODO: non-blocking broadcast<br> //select {<br> //case cl <- event: // Try to send event to client<br> //default:<br> // fmt.Println("Channel full. Discarding value")<br> //}<br> cl <- event<br> }<br> }<br> }<br> }()<br>}</code> | <code>1.0</code> |
|
| 360 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 361 |
+
```json
|
| 362 |
+
{
|
| 363 |
+
"scale": 20.0,
|
| 364 |
+
"similarity_fct": "cos_sim"
|
| 365 |
+
}
|
| 366 |
+
```
|
| 367 |
+
|
| 368 |
+
### Training Hyperparameters
|
| 369 |
+
#### Non-Default Hyperparameters
|
| 370 |
+
|
| 371 |
+
- `per_device_train_batch_size`: 200
|
| 372 |
+
- `per_device_eval_batch_size`: 200
|
| 373 |
+
- `fp16`: True
|
| 374 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 375 |
+
|
| 376 |
+
#### All Hyperparameters
|
| 377 |
+
<details><summary>Click to expand</summary>
|
| 378 |
+
|
| 379 |
+
- `overwrite_output_dir`: False
|
| 380 |
+
- `do_predict`: False
|
| 381 |
+
- `eval_strategy`: no
|
| 382 |
+
- `prediction_loss_only`: True
|
| 383 |
+
- `per_device_train_batch_size`: 200
|
| 384 |
+
- `per_device_eval_batch_size`: 200
|
| 385 |
+
- `per_gpu_train_batch_size`: None
|
| 386 |
+
- `per_gpu_eval_batch_size`: None
|
| 387 |
+
- `gradient_accumulation_steps`: 1
|
| 388 |
+
- `eval_accumulation_steps`: None
|
| 389 |
+
- `torch_empty_cache_steps`: None
|
| 390 |
+
- `learning_rate`: 5e-05
|
| 391 |
+
- `weight_decay`: 0.0
|
| 392 |
+
- `adam_beta1`: 0.9
|
| 393 |
+
- `adam_beta2`: 0.999
|
| 394 |
+
- `adam_epsilon`: 1e-08
|
| 395 |
+
- `max_grad_norm`: 1
|
| 396 |
+
- `num_train_epochs`: 3
|
| 397 |
+
- `max_steps`: -1
|
| 398 |
+
- `lr_scheduler_type`: linear
|
| 399 |
+
- `lr_scheduler_kwargs`: {}
|
| 400 |
+
- `warmup_ratio`: 0.0
|
| 401 |
+
- `warmup_steps`: 0
|
| 402 |
+
- `log_level`: passive
|
| 403 |
+
- `log_level_replica`: warning
|
| 404 |
+
- `log_on_each_node`: True
|
| 405 |
+
- `logging_nan_inf_filter`: True
|
| 406 |
+
- `save_safetensors`: True
|
| 407 |
+
- `save_on_each_node`: False
|
| 408 |
+
- `save_only_model`: False
|
| 409 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 410 |
+
- `no_cuda`: False
|
| 411 |
+
- `use_cpu`: False
|
| 412 |
+
- `use_mps_device`: False
|
| 413 |
+
- `seed`: 42
|
| 414 |
+
- `data_seed`: None
|
| 415 |
+
- `jit_mode_eval`: False
|
| 416 |
+
- `use_ipex`: False
|
| 417 |
+
- `bf16`: False
|
| 418 |
+
- `fp16`: True
|
| 419 |
+
- `fp16_opt_level`: O1
|
| 420 |
+
- `half_precision_backend`: auto
|
| 421 |
+
- `bf16_full_eval`: False
|
| 422 |
+
- `fp16_full_eval`: False
|
| 423 |
+
- `tf32`: None
|
| 424 |
+
- `local_rank`: 0
|
| 425 |
+
- `ddp_backend`: None
|
| 426 |
+
- `tpu_num_cores`: None
|
| 427 |
+
- `tpu_metrics_debug`: False
|
| 428 |
+
- `debug`: []
|
| 429 |
+
- `dataloader_drop_last`: False
|
| 430 |
+
- `dataloader_num_workers`: 0
|
| 431 |
+
- `dataloader_prefetch_factor`: None
|
| 432 |
+
- `past_index`: -1
|
| 433 |
+
- `disable_tqdm`: False
|
| 434 |
+
- `remove_unused_columns`: True
|
| 435 |
+
- `label_names`: None
|
| 436 |
+
- `load_best_model_at_end`: False
|
| 437 |
+
- `ignore_data_skip`: False
|
| 438 |
+
- `fsdp`: []
|
| 439 |
+
- `fsdp_min_num_params`: 0
|
| 440 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 441 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 442 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 443 |
+
- `deepspeed`: None
|
| 444 |
+
- `label_smoothing_factor`: 0.0
|
| 445 |
+
- `optim`: adamw_torch
|
| 446 |
+
- `optim_args`: None
|
| 447 |
+
- `adafactor`: False
|
| 448 |
+
- `group_by_length`: False
|
| 449 |
+
- `length_column_name`: length
|
| 450 |
+
- `ddp_find_unused_parameters`: None
|
| 451 |
+
- `ddp_bucket_cap_mb`: None
|
| 452 |
+
- `ddp_broadcast_buffers`: False
|
| 453 |
+
- `dataloader_pin_memory`: True
|
| 454 |
+
- `dataloader_persistent_workers`: False
|
| 455 |
+
- `skip_memory_metrics`: True
|
| 456 |
+
- `use_legacy_prediction_loop`: False
|
| 457 |
+
- `push_to_hub`: False
|
| 458 |
+
- `resume_from_checkpoint`: None
|
| 459 |
+
- `hub_model_id`: None
|
| 460 |
+
- `hub_strategy`: every_save
|
| 461 |
+
- `hub_private_repo`: None
|
| 462 |
+
- `hub_always_push`: False
|
| 463 |
+
- `hub_revision`: None
|
| 464 |
+
- `gradient_checkpointing`: False
|
| 465 |
+
- `gradient_checkpointing_kwargs`: None
|
| 466 |
+
- `include_inputs_for_metrics`: False
|
| 467 |
+
- `include_for_metrics`: []
|
| 468 |
+
- `eval_do_concat_batches`: True
|
| 469 |
+
- `fp16_backend`: auto
|
| 470 |
+
- `push_to_hub_model_id`: None
|
| 471 |
+
- `push_to_hub_organization`: None
|
| 472 |
+
- `mp_parameters`:
|
| 473 |
+
- `auto_find_batch_size`: False
|
| 474 |
+
- `full_determinism`: False
|
| 475 |
+
- `torchdynamo`: None
|
| 476 |
+
- `ray_scope`: last
|
| 477 |
+
- `ddp_timeout`: 1800
|
| 478 |
+
- `torch_compile`: False
|
| 479 |
+
- `torch_compile_backend`: None
|
| 480 |
+
- `torch_compile_mode`: None
|
| 481 |
+
- `include_tokens_per_second`: False
|
| 482 |
+
- `include_num_input_tokens_seen`: False
|
| 483 |
+
- `neftune_noise_alpha`: None
|
| 484 |
+
- `optim_target_modules`: None
|
| 485 |
+
- `batch_eval_metrics`: False
|
| 486 |
+
- `eval_on_start`: False
|
| 487 |
+
- `use_liger_kernel`: False
|
| 488 |
+
- `liger_kernel_config`: None
|
| 489 |
+
- `eval_use_gather_object`: False
|
| 490 |
+
- `average_tokens_across_devices`: False
|
| 491 |
+
- `prompts`: None
|
| 492 |
+
- `batch_sampler`: batch_sampler
|
| 493 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 494 |
+
- `router_mapping`: {}
|
| 495 |
+
- `learning_rate_mapping`: {}
|
| 496 |
+
|
| 497 |
+
</details>
|
| 498 |
+
|
| 499 |
+
### Training Logs
|
| 500 |
+
| Epoch | Step | Training Loss |
|
| 501 |
+
|:------:|:----:|:-------------:|
|
| 502 |
+
| 1.7007 | 500 | 0.2697 |
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
### Framework Versions
|
| 506 |
+
- Python: 3.10.12
|
| 507 |
+
- Sentence Transformers: 5.0.0
|
| 508 |
+
- Transformers: 4.53.1
|
| 509 |
+
- PyTorch: 2.7.0+cu128
|
| 510 |
+
- Accelerate: 1.7.0
|
| 511 |
+
- Datasets: 3.6.0
|
| 512 |
+
- Tokenizers: 0.21.2
|
| 513 |
+
|
| 514 |
+
## Citation
|
| 515 |
+
|
| 516 |
+
### BibTeX
|
| 517 |
+
|
| 518 |
+
#### Sentence Transformers
|
| 519 |
+
```bibtex
|
| 520 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 521 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 522 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 523 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 524 |
+
month = "11",
|
| 525 |
+
year = "2019",
|
| 526 |
+
publisher = "Association for Computational Linguistics",
|
| 527 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 528 |
+
}
|
| 529 |
+
```
|
| 530 |
+
|
| 531 |
+
#### MultipleNegativesRankingLoss
|
| 532 |
+
```bibtex
|
| 533 |
+
@misc{henderson2017efficient,
|
| 534 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 535 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 536 |
+
year={2017},
|
| 537 |
+
eprint={1705.00652},
|
| 538 |
+
archivePrefix={arXiv},
|
| 539 |
+
primaryClass={cs.CL}
|
| 540 |
+
}
|
| 541 |
+
```
|
| 542 |
+
|
| 543 |
+
<!--
|
| 544 |
+
## Glossary
|
| 545 |
+
|
| 546 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 547 |
+
-->
|
| 548 |
+
|
| 549 |
+
<!--
|
| 550 |
+
## Model Card Authors
|
| 551 |
+
|
| 552 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 553 |
+
-->
|
| 554 |
+
|
| 555 |
+
<!--
|
| 556 |
+
## Model Card Contact
|
| 557 |
+
|
| 558 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 559 |
+
-->
|
added_tokens.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</s>": 30001,
|
| 3 |
+
"<mask>": 30004,
|
| 4 |
+
"<pad>": 30003,
|
| 5 |
+
"<s>": 30000,
|
| 6 |
+
"<unk>": 30002
|
| 7 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ModernBertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"attention_probs_dropout_prob": 0.1,
|
| 8 |
+
"bos_token_id": 30000,
|
| 9 |
+
"classifier_activation": "gelu",
|
| 10 |
+
"classifier_bias": false,
|
| 11 |
+
"classifier_dropout": 0.0,
|
| 12 |
+
"classifier_pooling": "cls",
|
| 13 |
+
"cls_token_id": 50281,
|
| 14 |
+
"decoder_bias": true,
|
| 15 |
+
"deterministic_flash_attn": false,
|
| 16 |
+
"embedding_dropout": 0.0,
|
| 17 |
+
"eos_token_id": 30001,
|
| 18 |
+
"global_attn_every_n_layers": 3,
|
| 19 |
+
"global_rope_theta": 160000.0,
|
| 20 |
+
"hidden_activation": "gelu",
|
| 21 |
+
"hidden_dropout_prob": 0.1,
|
| 22 |
+
"hidden_size": 512,
|
| 23 |
+
"initializer_cutoff_factor": 2.0,
|
| 24 |
+
"initializer_range": 0.02,
|
| 25 |
+
"intermediate_size": 2048,
|
| 26 |
+
"local_attention": 128,
|
| 27 |
+
"local_attention_rope_theta": 10000,
|
| 28 |
+
"local_attention_window": 128,
|
| 29 |
+
"local_rope_theta": 10000.0,
|
| 30 |
+
"max_position_embeddings": 8192,
|
| 31 |
+
"mlp_bias": false,
|
| 32 |
+
"mlp_dropout": 0.0,
|
| 33 |
+
"model_type": "modernbert",
|
| 34 |
+
"norm_bias": false,
|
| 35 |
+
"norm_eps": 1e-05,
|
| 36 |
+
"num_attention_heads": 8,
|
| 37 |
+
"num_hidden_layers": 6,
|
| 38 |
+
"pad_token_id": 1,
|
| 39 |
+
"repad_logits_with_grad": false,
|
| 40 |
+
"rope_theta": 160000,
|
| 41 |
+
"sep_token_id": 50282,
|
| 42 |
+
"sparse_pred_ignore_index": -100,
|
| 43 |
+
"sparse_prediction": false,
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.53.1",
|
| 46 |
+
"type_vocab_size": 2,
|
| 47 |
+
"vocab_size": 30005
|
| 48 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.0.0",
|
| 5 |
+
"transformers": "4.53.1",
|
| 6 |
+
"pytorch": "2.7.0+cu128"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e0d9d8597cf0feb08e28d116d717de8d0ea1c5173e8a196cbf5349647357d1b
|
| 3 |
+
size 162143824
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 1024,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": true,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": true,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"30000": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"30001": {
|
| 13 |
+
"content": "</s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"30002": {
|
| 21 |
+
"content": "<unk>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"30003": {
|
| 29 |
+
"content": "<pad>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": true,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"30004": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": false,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"extra_special_tokens": {},
|
| 51 |
+
"mask_token": "<mask>",
|
| 52 |
+
"max_length": 256,
|
| 53 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 54 |
+
"pad_token": "<pad>",
|
| 55 |
+
"sep_token": "</s>",
|
| 56 |
+
"stride": 0,
|
| 57 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 58 |
+
"trim_offsets": true,
|
| 59 |
+
"truncation_side": "right",
|
| 60 |
+
"truncation_strategy": "longest_first",
|
| 61 |
+
"unk_token": "<unk>"
|
| 62 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|