File size: 2,234 Bytes
5ae72ce
 
 
 
0e1925d
 
5ae72ce
 
 
0e1925d
 
 
 
 
 
 
 
 
 
 
 
 
5ae72ce
 
 
 
 
0e1925d
5ae72ce
0e1925d
5ae72ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1925d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Multi-Domain-Expert-Layers/pubmed_central
metrics:
- accuracy
model-index:
- name: layer_9,10,11,12,13
  results:
  - task:
      type: text-generation
      name: Causal Language Modeling
    dataset:
      name: Multi-Domain-Expert-Layers/pubmed_central
      type: Multi-Domain-Expert-Layers/pubmed_central
      split: None
    metrics:
    - type: accuracy
      value: 0.5767534246575342
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layer_9,10,11,12,13

This model is a fine-tuned version of [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) on the Multi-Domain-Expert-Layers/pubmed_central dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0227
- Accuracy: 0.5768

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0567        | 0.0   | 200  | 2.0533          | 0.5717   |
| 2.041         | 0.01  | 400  | 2.0438          | 0.5733   |
| 2.0496        | 0.01  | 600  | 2.0361          | 0.5749   |
| 2.0194        | 0.02  | 800  | 2.0276          | 0.5761   |
| 2.0338        | 0.02  | 1000 | 2.0227          | 0.5768   |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3


## Wandb Report
 https://wandb.ai/ontocord/pythia-1b-deduped-layer-test-pubmed_central/runs/yy3pwx0o