Upload 2 files
Browse files- .gitattributes +1 -0
- README.md +68 -0
- replay.mp4 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: lerobot
|
| 3 |
+
tags:
|
| 4 |
+
- model_hub_mixin
|
| 5 |
+
- pytorch_model_hub_mixin
|
| 6 |
+
- robotics
|
| 7 |
+
- dot
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
datasets:
|
| 10 |
+
- lerobot/aloha_sim_transfer_cube_human
|
| 11 |
+
pipeline_tag: robotics
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Model Card for "Decoder Only Transformer (DOT) Policy" for ALOHA cube transfer problem
|
| 15 |
+
|
| 16 |
+
Read more about the model and implementation details in the [DOT Policy repository](https://github.com/IliaLarchenko/dot_policy).
|
| 17 |
+
|
| 18 |
+
This model is trained using the [LeRobot library](https://huggingface.co/lerobot) and achieves state-of-the-art results on behavior cloning on ALOHA bimanual insert dataset. It achieves 92.6% success rate vs. 83% for the previous state-of-the-art model (ACT). (Note: it looks like the LeRobot implementation is not deterministic of environment makes it easier than the original problem, I am comparing it with https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human).
|
| 19 |
+
|
| 20 |
+
You can use this model by installing LeRobot from [this branch](https://github.com/IliaLarchenko/lerobot/tree/dot_new_config)
|
| 21 |
+
|
| 22 |
+
To train the model:
|
| 23 |
+
|
| 24 |
+
```bash
|
| 25 |
+
python lerobot/scripts/train.py \
|
| 26 |
+
--policy.type=dot \
|
| 27 |
+
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \
|
| 28 |
+
--env.type=aloha \
|
| 29 |
+
--env.task=AlohaTransferCube-v0 \
|
| 30 |
+
--output_dir=outputs/train/pusht_aloha_transfer_cube \
|
| 31 |
+
--batch_size=24 \
|
| 32 |
+
--log_freq=1000 \
|
| 33 |
+
--eval_freq=5000 \
|
| 34 |
+
--save_freq=5000 \
|
| 35 |
+
--offline.steps=100000 \
|
| 36 |
+
--seed=100000 \
|
| 37 |
+
--wandb.enable=true \
|
| 38 |
+
--num_workers=24 \
|
| 39 |
+
--use_amp=true \
|
| 40 |
+
--device=cuda \
|
| 41 |
+
--policy.optimizer_lr=0.0001 \
|
| 42 |
+
--policy.optimizer_min_lr=0.0001 \
|
| 43 |
+
--policy.optimizer_lr_cycle_steps=100000 \
|
| 44 |
+
--policy.train_horizon=75 \
|
| 45 |
+
--policy.inference_horizon=50 \
|
| 46 |
+
--policy.lookback_obs_steps=20 \
|
| 47 |
+
--policy.lookback_aug=5 \
|
| 48 |
+
--policy.rescale_shape="[480,640]" \
|
| 49 |
+
--policy.alpha=0.98 \
|
| 50 |
+
--policy.train_alpha=0.99 \
|
| 51 |
+
--wandb.project=transfer_cube
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
To evaluate the model:
|
| 55 |
+
|
| 56 |
+
```bash
|
| 57 |
+
python lerobot/scripts/eval.py \
|
| 58 |
+
--policy.path=IliaLarchenko/dot_transfer_cube \
|
| 59 |
+
--env.type=aloha \
|
| 60 |
+
--env.task=AlohaTransferCube-v0 \
|
| 61 |
+
--eval.n_episodes=1000 \
|
| 62 |
+
--eval.batch_size=100 \
|
| 63 |
+
--seed=1000000
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
Model size:
|
| 67 |
+
- Total parameters: 14.1m
|
| 68 |
+
- Trainable parameters: 2.9m
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8dd1675e799724b2a2475d8b78a30eb7dfbc80dd328eea9fd1c87136ade3ccfa
|
| 3 |
+
size 192227
|