Commit
·
d2544e1
1
Parent(s):
23516c0
Make GPT inherit from PreTrainedModel for HF compatibility
Browse files
README.md
CHANGED
|
@@ -13,7 +13,6 @@ library_name: transformers
|
|
| 13 |
pipeline_tag: text-generation
|
| 14 |
---
|
| 15 |
|
| 16 |
-
# 🍼 BabyLangModel
|
| 17 |
|
| 18 |
# 🍼 BabyLangModel
|
| 19 |
|
|
|
|
| 13 |
pipeline_tag: text-generation
|
| 14 |
---
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
# 🍼 BabyLangModel
|
| 18 |
|
model.py
CHANGED
|
@@ -2,6 +2,30 @@ import torch
|
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
class LayerNorm(nn.Module):
|
| 7 |
def __init__(self, ndim, bias):
|
|
@@ -70,10 +94,11 @@ class Block(nn.Module):
|
|
| 70 |
x = x + self.mlp(self.ln2(x))
|
| 71 |
return x
|
| 72 |
|
| 73 |
-
class GPT(
|
|
|
|
|
|
|
| 74 |
def __init__(self, config):
|
| 75 |
-
super().__init__()
|
| 76 |
-
self.config = config
|
| 77 |
self.transformer = nn.ModuleDict(dict(
|
| 78 |
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
| 79 |
wpe=nn.Embedding(config.block_size, config.n_embd),
|
|
@@ -97,37 +122,37 @@ class GPT(nn.Module):
|
|
| 97 |
elif isinstance(module, nn.Embedding):
|
| 98 |
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 99 |
|
| 100 |
-
def forward(self,
|
| 101 |
-
device =
|
| 102 |
-
b, t =
|
| 103 |
assert t <= self.config.block_size
|
| 104 |
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
| 105 |
|
| 106 |
-
tok_emb = self.transformer.wte(
|
| 107 |
pos_emb = self.transformer.wpe(pos)
|
| 108 |
x = self.transformer.drop(tok_emb + pos_emb)
|
| 109 |
for block in self.transformer.h:
|
| 110 |
x = block(x)
|
| 111 |
x = self.transformer.ln_f(x)
|
| 112 |
|
| 113 |
-
if
|
| 114 |
logits = self.lm_head(x)
|
| 115 |
-
loss = F.cross_entropy(logits.view(-1, logits.size(-1)),
|
| 116 |
-
return logits, loss
|
| 117 |
else:
|
| 118 |
logits = self.lm_head(x[:, [-1], :])
|
| 119 |
-
return logits
|
| 120 |
|
| 121 |
@torch.no_grad()
|
| 122 |
-
def generate(self,
|
| 123 |
for _ in range(max_new_tokens):
|
| 124 |
-
idx_cond =
|
| 125 |
-
|
| 126 |
-
logits = logits[:, -1, :] / temperature
|
| 127 |
if top_k is not None:
|
| 128 |
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 129 |
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 130 |
probs = F.softmax(logits, dim=-1)
|
| 131 |
idx_next = torch.multinomial(probs, num_samples=1)
|
| 132 |
-
|
| 133 |
-
return
|
|
|
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
import math
|
| 5 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 6 |
+
|
| 7 |
+
class GPTConfig(PretrainedConfig):
|
| 8 |
+
model_type = "gpt"
|
| 9 |
+
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
vocab_size=50257,
|
| 13 |
+
block_size=128,
|
| 14 |
+
n_layer=6,
|
| 15 |
+
n_head=6,
|
| 16 |
+
n_embd=384,
|
| 17 |
+
dropout=0.0,
|
| 18 |
+
bias=True,
|
| 19 |
+
**kwargs
|
| 20 |
+
):
|
| 21 |
+
super().__init__(**kwargs)
|
| 22 |
+
self.vocab_size = vocab_size
|
| 23 |
+
self.block_size = block_size
|
| 24 |
+
self.n_layer = n_layer
|
| 25 |
+
self.n_head = n_head
|
| 26 |
+
self.n_embd = n_embd
|
| 27 |
+
self.dropout = dropout
|
| 28 |
+
self.bias = bias
|
| 29 |
|
| 30 |
class LayerNorm(nn.Module):
|
| 31 |
def __init__(self, ndim, bias):
|
|
|
|
| 94 |
x = x + self.mlp(self.ln2(x))
|
| 95 |
return x
|
| 96 |
|
| 97 |
+
class GPT(PreTrainedModel):
|
| 98 |
+
config_class = GPTConfig
|
| 99 |
+
|
| 100 |
def __init__(self, config):
|
| 101 |
+
super().__init__(config)
|
|
|
|
| 102 |
self.transformer = nn.ModuleDict(dict(
|
| 103 |
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
| 104 |
wpe=nn.Embedding(config.block_size, config.n_embd),
|
|
|
|
| 122 |
elif isinstance(module, nn.Embedding):
|
| 123 |
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 124 |
|
| 125 |
+
def forward(self, input_ids, labels=None):
|
| 126 |
+
device = input_ids.device
|
| 127 |
+
b, t = input_ids.size()
|
| 128 |
assert t <= self.config.block_size
|
| 129 |
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
| 130 |
|
| 131 |
+
tok_emb = self.transformer.wte(input_ids)
|
| 132 |
pos_emb = self.transformer.wpe(pos)
|
| 133 |
x = self.transformer.drop(tok_emb + pos_emb)
|
| 134 |
for block in self.transformer.h:
|
| 135 |
x = block(x)
|
| 136 |
x = self.transformer.ln_f(x)
|
| 137 |
|
| 138 |
+
if labels is not None:
|
| 139 |
logits = self.lm_head(x)
|
| 140 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)
|
| 141 |
+
return {'logits': logits, 'loss': loss}
|
| 142 |
else:
|
| 143 |
logits = self.lm_head(x[:, [-1], :])
|
| 144 |
+
return {'logits': logits}
|
| 145 |
|
| 146 |
@torch.no_grad()
|
| 147 |
+
def generate(self, input_ids, max_new_tokens, temperature=1.0, top_k=None):
|
| 148 |
for _ in range(max_new_tokens):
|
| 149 |
+
idx_cond = input_ids if input_ids.size(1) <= self.config.block_size else input_ids[:, -self.config.block_size:]
|
| 150 |
+
out = self(idx_cond)
|
| 151 |
+
logits = out['logits'][:, -1, :] / temperature
|
| 152 |
if top_k is not None:
|
| 153 |
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 154 |
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 155 |
probs = F.softmax(logits, dim=-1)
|
| 156 |
idx_next = torch.multinomial(probs, num_samples=1)
|
| 157 |
+
input_ids = torch.cat((input_ids, idx_next), dim=1)
|
| 158 |
+
return input_ids
|