#!/bin/bash MODE=${1:-"split"} OUTPUTWINDOW=${2:-16} ITERATIVE_COMPRESS=${3:-"true"} splits_dir=${4:-"ocpython_subsampled_50G_entropy90_splits_line"} FORCE_PADDING=${5:-"true"} SPLIT_CHUNK_SIZE=${6:-"lines"} GLOBAL_NODE_OFFSET=${7:-0} ENTROPY_QUANTILE=0.90 NUM_GPUS_PER_NODE=$ARNOLD_WORKER_GPU NODE_ID=$(( ARNOLD_ID + GLOBAL_NODE_OFFSET )) if [ "$MODE" == "split" ]; then JOBS_PER_GPU=1 elif [ "$MODE" == "compress" ]; then JOBS_PER_GPU=2 else echo "Error: Unknown mode '$MODE'." echo "Available modes: split, compress" exit 1 fi # Total number of JSONL files to process TOTAL_JSONL_FILES=16 TOTAL_JOBS_PER_FILE=64 # JOBS_PER_GPU = 2 so 32 GPU process one file TOTAL_JOBS=$(( TOTAL_JOBS_PER_FILE * TOTAL_JSONL_FILES )) JOBS_PER_NODE=$(( JOBS_PER_GPU * NUM_GPUS_PER_NODE )) GLOBAL_TOTAL_NODES=$(( (TOTAL_JSONL_FILES * TOTAL_JOBS_PER_FILE) / JOBS_PER_NODE )) # Calculate the start and end job indices for THIS specific node. # These are global indices ranging from 0 to (TOTAL_JOBS_PER_FILE - 1). START_JOB_IDX=$(( NODE_ID * JOBS_PER_NODE )) END_JOB_IDX=$(( START_JOB_IDX + JOBS_PER_NODE - 1 )) # Ensure the last node doesn't try to run more jobs than exist. if [ $END_JOB_IDX -ge $TOTAL_JOBS ]; then END_JOB_IDX=$(( TOTAL_JOBS - 1 )) fi if [[ $SPLIT_CHUNK_SIZE == "lines" ]]; then SPLIT_ARGS="--chunk_size 128 --apply_line_split" else SPLIT_ARGS="--chunk_size $SPLIT_CHUNK_SIZE" fi if [[ $ITERATIVE_COMPRESS == "false" ]]; then ADDITIONAL_ARG="" elif [[ $ITERATIVE_COMPRESS == "true" ]]; then ADDITIONAL_ARG="--iterative_compress" else echo "Error: Unknown arg '$ITERATIVE_COMPRESS'." echo "Available values: false, true" exit 1 fi if [[ $FORCE_PADDING == "false" ]]; then ADDITIONAL_ARG=${ADDITIONAL_ARG}" " elif [[ $FORCE_PADDING == "true" ]]; then ADDITIONAL_ARG=${ADDITIONAL_ARG}" --force_padding_to_threshold" else echo "Error: Unknown arg '$FORCE_PADDING'." echo "Available values: false, true" exit 1 fi compress_dir=${splits_dir}"_ow${OUTPUTWINDOW}_iterative-${ITERATIVE_COMPRESS}_forcepadding-${FORCE_PADDING}_ac" # Directory and model paths input_dir="opencoder" entropy_model_path=/mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_40M_lr1e-3_steps200k_bs8_seqlen2048_full/checkpoints/0000200000 compression_model_path=/mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_40M_lr1e-3_steps200k_bs8_seqlen2048_full/checkpoints/0000200000 echo "==================================================" echo "Starting processing on Node ${NODE_ID} of ${GLOBAL_TOTAL_NODES}" echo "Node GPU Count: ${NUM_GPUS_PER_NODE}" echo "Total Jobs per File: ${TOTAL_JOBS_PER_FILE}" echo "Jobs handled per Node: ${JOBS_PER_NODE}" echo "This node will handle global job indices: ${START_JOB_IDX} to ${END_JOB_IDX}" echo "==================================================" # Create a directory for log files if it doesn't exist mkdir -p logs GLOBAL_JOB_COUNTER=0 echo "--> Processing JSONL file: ${input_dir}/chunk.${JSONL_IDX}.jsonl" for global_job_idx in $(seq $START_JOB_IDX $END_JOB_IDX); do JSONL_IDX=$(( (global_job_idx / TOTAL_JOBS_PER_FILE) + 1 )) job_index=$(( global_job_idx % TOTAL_JOBS_PER_FILE )) GPU_IDX=$(( GLOBAL_JOB_COUNTER % NUM_GPUS_PER_NODE )) echo " Launching job ${job_index} for file ${JSONL_IDX} on GPU ${GPU_IDX} (Global Job #${GLOBAL_JOB_COUNTER})..." if [ "$MODE" == "split" ]; then CUDA_VISIBLE_DEVICES=${GPU_IDX} python3 offline_entropy_window_split.py \ --input_file /mnt/hdfs/user/linzheng/data/${input_dir}/chunk.${JSONL_IDX}.jsonl \ --output_dir /mnt/hdfs/user/linzheng/data/${splits_dir} \ --entropy_model_path $entropy_model_path \ --compression_model_path $compression_model_path \ --data_batch_size 256 \ --max_entropy_batch_size 256 \ --num_workers 1 \ --process_id ${job_index} \ --num_processes ${TOTAL_JOBS_PER_FILE} \ --base_global_quantile ${ENTROPY_QUANTILE} \ --base_monotonic_quantile ${ENTROPY_QUANTILE} \ $SPLIT_ARGS > "logs/split_node${NODE_ID}_jsonl${JSONL_IDX}_process${job_index}.log" 2>&1 & elif [ "$MODE" == "compress" ]; then CUDA_VISIBLE_DEVICES=${GPU_IDX} python3 offline_entropy_window_compress_ac.py \ --input_file /mnt/hdfs/user/linzheng/data/${splits_dir}/chunk.${JSONL_IDX}.jsonl \ --output_dir /mnt/hdfs/user/linzheng/data/${compress_dir} \ --entropy_model_path $entropy_model_path \ --compression_model_path $compression_model_path \ --firstbyte_prob_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/ac_unigram_probs/opencoder13G_unigram_prob_smooth0.1.json \ --data_batch_size 512 --max_compression_batch_size 256 \ --output_window_size ${OUTPUTWINDOW} ${ADDITIONAL_ARG} \ --num_workers 3 --process_id $job_index --num_processes $TOTAL_JOBS_PER_FILE > "logs/compress_node${NODE_ID}_jsonl${JSONL_IDX}_process${job_index}.log" 2>&1 & else echo "Error: Unknown mode '$MODE'." echo "Available modes: split, compress" exit 1 fi # Increment the global counter for the next job GLOBAL_JOB_COUNTER=$(( GLOBAL_JOB_COUNTER + 1 )) done wait cat logs/compress_node${NODE_ID}_jsonl${START_JSONL_IDX}_process0.log echo "==================================================" echo "Final check for errors in all log files on Node ${NODE_ID}..." if grep -q -E 'Error|Traceback|failed|error' logs/*.log; then echo "❌ Failure: An error keyword was found in one or more log files on this node." grep -E 'Error|Traceback|failed|error' logs/*.log exit 1 else echo "✅ Success: No errors found in logs on Node ${NODE_ID}." fi echo "" echo "All jobs on Node ${NODE_ID} have successfully finished." echo "=================================================="