# python3 offline_compress_m1.py \ # --input_dir data/m1 \ # --output_dir test_data/m1 \ # --model_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_6M_lr1e-2_steps50k_bs128_seqlen512/checkpoints/0000050000 NUM_GPUS=8 total_jsonls=8 total_jobs=1 # --firstbyte_prob_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/ac_unigram_probs/python500k_unigram_prob.json \ for JSONL_IDX in $(seq 1 $total_jsonls); do for index in $(seq 0 $((total_jobs - 1))); do echo "Starting job $index..." GPU_IDX=$(( (JSONL_IDX - 1) % NUM_GPUS )) CUDA_VISIBLE_DEVICES=${GPU_IDX} python3 offline_entropy_window_split.py \ --input_file /mnt/hdfs/user/linzheng/data/ocpython_subsampled_50G/ocp.chunk.${JSONL_IDX}.jsonl \ --output_dir ocpython_subsampled_50G_entropy90_splits \ --entropy_model_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_40M_lr1e-3_steps200k_bs8_seqlen2048_python/checkpoints/0000200000 \ --compression_model_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_40M_lr1e-3_steps200k_bs8_seqlen2048_python/checkpoints/0000200000 \ --data_batch_size 256 \ --max_entropy_batch_size 256 --max_compression_batch_size 8192 \ --num_workers 1 --process_id $index --num_processes $total_jobs \ --base_global_quantile 0.9 --base_monotonic_quantile 0.9 \ --chunk_size 2048 > jsonl${JSONL_IDX}_process${index}_total${total_jobs}.log 2>&1 & done done wait # for JSONL_IDX in $(seq 1 $total_jsonls); do # for index in $(seq 0 $((total_jobs - 1))); do # echo "Starting job $index..." # GPU_IDX=$(( (JSONL_IDX - 1) % NUM_GPUS )) # CUDA_VISIBLE_DEVICES=${GPU_IDX} python3 offline_compress_m1_entropy_splits.py \ # --input_file /mnt/hdfs/user/linzheng/data/ocpython_subsampled_50G/ocp.chunk.${JSONL_IDX}.jsonl \ # --output_dir ocpython_subsampled_50G_entropy90_splits \ # --entropy_model_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_40M_lr1e-3_steps200k_bs8_seqlen2048_python/checkpoints/0000200000 \ # --compression_model_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_6M_lr1e-2_steps50k_bs128_seqlen512/checkpoints/0000050000 \ # --data_batch_size 64 --output_window_size 24 --max_window_size 64 \ # --max_entropy_batch_size 256 --max_compression_batch_size 8192 \ # --num_workers 1 --process_id $index --num_processes $total_jobs \ # --base_global_quantile 0.90 --base_monotonic_quantile 0.90 \ # --chunk_size 2048 > jsonl${JSONL_IDX}_process${index}_total${total_jobs}.log 2>&1 & # done # done # wait # for JSONL_IDX in $(seq 1 $total_jsonls); do # for index in $(seq 0 $((total_jobs - 1))); do # echo "Starting job $index..." # GPU_IDX=$(( (JSONL_IDX - 1) % NUM_GPUS )) # CUDA_VISIBLE_DEVICES=${GPU_IDX} python3 offline_compress_m1_entropy_splits.py \ # --input_file /mnt/hdfs/user/linzheng/data/ocpython_subsampled_50G/ocp.chunk.${JSONL_IDX}.jsonl \ # --output_dir ocpython_subsampled_50G_entropy95_splits \ # --entropy_model_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_40M_lr1e-3_steps200k_bs8_seqlen2048_python/checkpoints/0000200000 \ # --compression_model_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_6M_lr1e-2_steps50k_bs128_seqlen512/checkpoints/0000050000 \ # --data_batch_size 64 --output_window_size 24 --max_window_size 64 \ # --max_entropy_batch_size 256 --max_compression_batch_size 8192 \ # --num_workers 1 --process_id $index --num_processes $total_jobs \ # --base_global_quantile 0.95 --base_monotonic_quantile 0.95 \ # --chunk_size 2048 > jsonl${JSONL_IDX}_process${index}_total${total_jobs}.log 2>&1 & # done # done # for JSONL_IDX in $(seq 1 $total_jsonls); do # for index in $(seq 0 $((total_jobs - 1))); do # echo "Starting job $index..." # GPU_IDX=$(( JSONL_IDX - 1 )) # CUDA_VISIBLE_DEVICES=${GPU_IDX} python3 offline_compress_m1_outputwindow_v3.py \ # --input_file /mnt/hdfs/user/linzheng/data/ocpython_subsampled_50G/ocp.chunk.${JSONL_IDX}.jsonl \ # --output_dir ocpython_subsampled_50G_outputwindow_24 \ # --model_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_40M_lr1e-3_steps200k_bs32_seqlen512_python/checkpoints/0000200000 \ # --data_batch_size 512 --output_window_size 24 --max_m1_batch_size 4096 --max_window_size 64 \ # --num_workers 1 --process_id $index --num_processes $total_jobs \ # --output_window_size 32 > gpu${GPU_IDX}_process${index}_total${total_jobs}.log 2>&1 & # done # done